Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • ERPNext MCP Server
  • Powertools MCP Search Server
  • Jira MCP Server
  • MCP Apple Reminders
  • sourcesage
Back to MCP Servers
MCP Hardware Access Library

MCP Hardware Access Library

Public
UnitApi/mcp

A Python framework that enables secure hardware control through the Model Context Protocol, allowing AI agents and automation systems to interact with physical devices across multiple platforms.

Verified
python
0 tools
May 29, 2025
Updated May 30, 2025

MCP Hardware Project Summary

graph.svg

🚀 Project Overview

The MCP Hardware Access Library is a comprehensive Python framework that enables secure hardware control through the Model Context Protocol (MCP). It provides AI agents and automation systems with the ability to interact with physical devices across multiple platforms.

📊 Project Statistics

  • Total Files: 40+ files
  • Lines of Code: ~5,000+ lines
  • Components: 7 major subsystems
  • Examples: 15+ demonstration scripts
  • Test Coverage: Full client/server tests

🆕 Latest Updates (May 2025)

  • Project Reorganization: Improved directory structure for better organization and clarity
  • Unified Documentation: Consolidated documentation in a structured format
  • Standardized Configuration: Reorganized configuration files for consistency
  • Simulation Mode: Enhanced simulation capabilities for development without hardware
  • DSL Integration: Fixed and improved Domain-Specific Language support
  • Claude 3.7 Integration: Added natural language processing for device control
  • Mock Device Factory: Created mock implementations for testing
  • Comprehensive Testing: All integration tests now passing
  • Claude UnitMCP Plugin: New plugin for advanced natural language hardware control
  • Remote Device Control: Enhanced shell CLI for interactive remote device control
  • GPIO Streaming: Added real-time GPIO streaming from Raspberry Pi to client PC
  • SSH/TCP Support: Added support for both SSH and TCP connections to remote devices

📦 Dependency Management

We now use Conda for dependency management to ensure consistent environments across different platforms:

  • Cross-platform compatibility: Works on Windows, Linux, macOS, and Raspberry Pi
  • Isolated environments: Prevents dependency conflicts
  • Binary package management: Handles both Python packages and system libraries

To set up your environment:

# Linux/macOS chmod +x setup_environment.sh ./setup_environment.sh # Windows setup_environment.bat

For more details, see INSTALLATION.md.

🚀 Quick Start with Auto-Installation

We've added convenient runner scripts that automatically detect if the UnitMCP package is installed and install it if needed:

# Linux/macOS ./run.sh [options] # Windows run.bat [options]

These scripts will:

  1. Check if the UnitMCP package is installed
  2. Install it automatically if it's not found
  3. Run the UnitMCP orchestrator with any provided options

This is especially useful for:

  • First-time setup on new devices
  • Running on Raspberry Pi without manual installation
  • Quick deployment in development environments

All command-line options are passed through to the UnitMCP orchestrator, so you can use them exactly as you would with the standard command:

./run.sh --verbose --simulation true

For more details on installation and running options, see INSTALLATION.md.

📚 Documentation

📁 New Project Structure

The project has been reorganized to improve clarity and reduce duplication:

  • Documentation: All documentation is now in the docs/ directory with clear sections
  • Configuration: Configuration files are now in the configs/ directory
  • Source Code: Source code is organized into logical categories in src/unitmcp/
  • Examples: Examples are categorized by functionality
  • Tests: Test structure aligns with the source code structure

See the Migration Guide for details on the changes and how to update your code.

🏗️ Architecture

Core Components

  1. Client System

    • MCPHardwareClient: Async client for hardware control
    • MCPShell: Interactive command-line interface
    • Pipeline execution support
  2. Server System

    • MCPServer: Main server framework
    • DeviceManager: Hardware device management
    • SecurityManager: Authentication and authorization
  3. Hardware Abstraction

    • Platform-specific implementations
    • Simulation support for development
    • Device discovery and configuration
  4. Remote Control

    • Shell-based remote control interface
    • WebSocket-based real-time updates
    • SSH and TCP connection options
    • GPIO streaming from Raspberry Pi to client PC
  5. Domain-Specific Language

    • YAML-based device configuration
    • Natural language command processing
    • Pipeline definition language
  6. Security Layer

    • Permission management system
    • Client authentication
    • Operation auditing
  7. Pipeline System

    • Automated command sequences
    • Conditional execution
    • Error handling and retries
    • Variable substitution
  8. DSL System

    • Domain-Specific Language for hardware configuration
    • YAML-based device definitions
    • Natural language command processing via Claude 3.7
    • Command parsing and execution
  9. Claude UnitMCP Plugin

    • Advanced natural language processing for hardware control
    • Multi-turn conversation support with context awareness
    • Robust error handling with conversational recovery
    • Integration with DSL system and MockDeviceFactory
    • Simulation mode for testing without hardware

architecture.svg

📊 Architecture Diagrams

System Architecture

graph TD A[AI Agent / User] --> B[MCPHardwareClient] B --> C[MCP Protocol] C --> D[MCPServer] D --> E1[GPIO Server] D --> E2[Input Server] D --> E3[Audio Server] D --> E4[Camera Server] E1 --> F1[Hardware Drivers] E2 --> F1 E3 --> F1 E4 --> F1 F1 --> G[Physical Hardware] H[Hardware Abstraction Layer] --> B H --> I1[LED Device] H --> I2[Button Device] H --> I3[Traffic Light Device] H --> I4[Display Device] I1 --> J[Device Factory] I2 --> J I3 --> J I4 --> J J --> F1

For more detailed architecture documentation, see the Architecture Documentation.

Project Structure

The project has been reorganized with the following structure:

UnitMCP/
├── configs/                # Configuration files
│   ├── env/                # Environment variables
│   └── yaml/               # YAML configuration files
│       ├── devices/        # Device configurations
│       ├── automation/     # Automation configurations
│       └── security/       # Security configurations
├── docs/                   # Documentation
│   ├── api/                # API documentation
│   ├── architecture/       # Architecture documentation
│   │   ├── diagrams/       # Architecture diagrams
│   │   └── descriptions/   # Component descriptions
│   ├── guides/             # User guides
│   │   ├── installation/   # Installation guides
│   │   ├── hardware/       # Hardware guides
│   │   └── llm/            # LLM integration guides
│   ├── examples/           # Example documentation
│   └── development/        # Development documentation
├── docker/                 # Docker configurations
├── examples/               # Example code
│   ├── basic/              # Basic examples
│   ├── platforms/          # Platform-specific examples
│   ├── llm/                # LLM integration examples
│   └── advanced/           # Advanced examples
├── src/                    # Source code
│   └── unitmcp/            # UnitMCP package
│       ├── core/           # Core functionality
│       ├── hardware/       # Hardware abstraction layer
│       ├── communication/  # Communication protocols
│       ├── dsl/            # Domain-specific language
│       ├── llm/            # LLM integration
│       ├── plugin/         # Plugin system
│       ├── security/       # Security features
│       ├── utils/          # Utility functions
│       └── simulation/     # Simulation components
└── tests/                  # Tests
    ├── unit/               # Unit tests
    ├── integration/        # Integration tests
    ├── system/             # System tests
    └── performance/        # Performance tests

🔌 Remote Device Control and GPIO Streaming

UnitMCP provides powerful capabilities for remote device control and real-time GPIO streaming:

Interactive Shell Control

The shell_cli module provides an interactive shell interface for controlling remote devices:

# Start the interactive shell cd examples/shell_cli python shell_cli_demo.py --interactive # In the shell mcp> connect 192.168.1.100 8888 mcp> gpio_setup 17 OUT mcp> led_setup led1 17 mcp> led led1 on

For simpler implementations, a lightweight shell is also available:

# Connect via TCP python simple_remote_shell.py --host 192.168.1.100 --port 8888 # Connect via SSH (requires paramiko) python simple_remote_shell.py --host 192.168.1.100 --port 22 --ssh

Real-time GPIO Streaming

The rpi_control module enables real-time streaming of GPIO pin states from a Raspberry Pi to a client PC:

# On the Raspberry Pi cd examples/rpi_control python server.py --stream-gpio # On the client PC cd examples/rpi_control python client.py --host --monitor-gpio

This provides:

  • Low-latency updates when GPIO states change
  • Bidirectional communication for remote control
  • Event-driven architecture for responsive applications
  • Support for multiple clients monitoring the same GPIO pins

See the examples/rpi_control/README.md for detailed documentation.

💡 Key Features

1. Hardware Control

  • GPIO Operations: LEDs, buttons, sensors (Raspberry Pi)
  • Input Devices: Keyboard and mouse automation
  • Audio System: Recording, playback, TTS/STT
  • Camera Control: Image capture, face detection, motion detection
  • USB Devices: Device enumeration and management

2. Hardware Abstraction Layer

  • Unified Interface: Consistent API across all device types
  • Multi-mode Operation: Hardware, simulation, remote, and mock modes
  • Device Types: LEDs, buttons, traffic lights, displays, and more
  • Event-driven Architecture: Callback system for device events
  • Configuration-based Setup: Create devices from configuration files
  • Factory Pattern: Extensible device creation system

3. Remote Hardware Setup

  • Automated Setup Scripts: Configure and test hardware components remotely
  • Component-specific Setup: Individual scripts for OLED, LCD, sensors, etc.
  • Simulation Mode: Test setup scripts without physical hardware or sudo privileges
  • Remote Deployment: SSH-based installation and configuration

4. AI Integration

  • Ollama LLM Support: Natural language hardware control
  • Voice Assistant: Speech recognition and synthesis
  • Automated Agents: AI-driven hardware automation

5. Interactive Shell

mcp> led_setup led1 17 mcp> led led1 on mcp> type "Hello from MCP!" mcp> pipeline_create automation mcp> pipeline_run automation

6. Pipeline Automation

steps = [ PipelineStep("setup", "gpio.setupLED", {"pin": 17}), PipelineStep("blink", "gpio.controlLED", {"action": "blink"}), PipelineStep("wait", "system.sleep", {"duration": 5}) ] pipeline = Pipeline("demo", steps) await pipeline.execute(client)

📁 Project Structure

mcp-hardware/
├── audio/                 # Audio-related scripts
├── build/                 # Build-related files
├── hardware/              # Hardware configuration scripts
├── install/               # Installation scripts and utilities
├── misc/                  # Miscellaneous utilities
├── nlp/                   # Natural Language Processing scripts
├── python/                # Python-related utilities
├── rpi/                   # Raspberry Pi specific scripts
├── service/               # Service setup scripts
├── ssh/                   # SSH connection utilities
├── test/                  # Testing utilities
├── update/                # Update and upgrade scripts
├── src/unitmcp/           # Main package
│   ├── client/                 # Client implementations
│   ├── server/                 # Hardware servers
│   ├── pipeline/               # Pipeline system
│   ├── protocols/              # MCP protocol
│   ├── security/               # Permission system
│   ├── hardware/               # Hardware abstraction layer
│   │   ├── base.py                 # Base device classes and interfaces
│   │   ├── led.py                  # LED device implementation
│   │   ├── button.py               # Button device implementation
│   │   ├── traffic_light.py        # Traffic light device implementation
│   │   ├── display.py              # Display device implementation
│   │   └── device_factory.py       # Device factory implementation
│   └── utils/                  # Utilities
├── examples/                   # Usage examples
│   ├── Basic Controls          # LED, keyboard, mouse
│   ├── Automation              # Pipelines, scripts
│   ├── AI Integration          # Ollama, voice
│   ├── Hardware Abstraction    # Device abstraction examples
│   └── Complete Systems        # Traffic light, security
└── tests/                      # Test suite

🚀 Quick Start

Installation

git clone https://github.com/example/mcp-hardware.git cd mcp-hardware pip install -e .

Hardware Setup

# Set up hardware components on a local Raspberry Pi python rpi_control/setup/setup_all.py --component oled # Set up hardware components on a remote Raspberry Pi python rpi_control/setup/remote_setup.py --host raspberrypi.local --component oled # Run setup in simulation mode (no physical hardware or sudo required) python rpi_control/setup/remote_setup.py --host raspberrypi.local --component oled --simulation

Start Server

python examples/start_server.py

Run Examples

# Basic LED control python examples/led_control.py # Interactive shell python -m unitmcp.client.shell # Pipeline automation python examples/pipeline_demo.py # Hardware abstraction layer demo python examples/hardware_example.py

Hardware Abstraction Layer Usage

# Create and use LED device from unitmcp.hardware.led import LEDDevice from unitmcp.hardware.base import DeviceMode # Create an LED device in simulation mode led = LEDDevice(device_id="my_led", pin=17, mode=DeviceMode.SIMULATION) # Initialize the device await led.initialize() # Control the LED await led.activate() # Turn on await led.deactivate() # Turn off await led.blink(on_time=0.5, off_time=0.5, count=5) # Blink 5 times # Using the device factory from unitmcp.hardware.device_factory import create_device from unitmcp.hardware.base import DeviceType # Create a device using the factory button = await create_device( factory_type="simulation", device_id="my_button", device_type=DeviceType.BUTTON, pin=27 ) # Clean up when done await led.cleanup() await button.cleanup()

AI Agent MCP Client MCP Servers Hardware Drivers

📚 Example Applications

1. Traffic Light System

  • Simulates complete traffic light with LEDs
  • Pedestrian crossing functionality
  • Timing control and sequencing

2. Security System

  • Motion detection alerts
  • Camera surveillance
  • Multi-sensor integration
  • Automated responses

3. Voice Assistant

  • Natural language commands
  • Hardware control via speech
  • Voice feedback and confirmation

4. Automation Workflows

  • Automated testing sequences
  • Data entry automation
  • System monitoring and alerts

🛠️ Practical Examples

LED Control Example

This example demonstrates controlling an LED using the hardware abstraction layer:

import asyncio from unitmcp.hardware.led import LEDDevice from unitmcp.hardware.base import DeviceMode async def led_example(): # Create an LED device in simulation mode led = LEDDevice(device_id="example_led", pin=17, mode=DeviceMode.SIMULATION) # Initialize the device await led.initialize() # Basic control print("Turning LED on") await led.activate() await asyncio.sleep(1) print("Turning LED off") await led.deactivate() await asyncio.sleep(1) # Brightness control print("Setting LED brightness to 50%") await led.set_brightness(0.5) await asyncio.sleep(1) # Blinking print("Blinking LED (3 times)") await led.blink(count=3) # Cleanup await led.cleanup() if __name__ == "__main__": asyncio.run(led_example())

Button with Event Callbacks

This example shows how to use a button with event callbacks:

import asyncio from unitmcp.hardware.button import ButtonDevice from unitmcp.hardware.base import DeviceMode async def button_example(): # Create a button device in simulation mode button = ButtonDevice(device_id="example_button", pin=27, mode=DeviceMode.SIMULATION) # Initialize the device await button.initialize() # Register event callbacks def on_pressed(event, data): print(f"Button pressed! Event: {event}, Data: {data}") def on_released(event, data): print(f"Button released! Event: {event}, Data: {data}") print(f"Press duration: {data.get('duration', 0):.2f} seconds") button.register_event_callback("pressed", on_pressed) button.register_event_callback("released", on_released) # Simulate button presses print("Simulating button press (short)") await button.simulate_press(duration=0.2) await asyncio.sleep(0.5) print("Simulating button press (long)") await button.simulate_press(duration=1.0) # Cleanup await button.cleanup() if __name__ == "__main__": asyncio.run(button_example())

Traffic Light Control

This example demonstrates controlling a traffic light sequence:

import asyncio from unitmcp.hardware.traffic_light import TrafficLightDevice, TrafficLightState from unitmcp.hardware.base import DeviceMode async def traffic_light_example(): # Create a traffic light device in simulation mode traffic_light = TrafficLightDevice( device_id="example_traffic_light", red_pin=17, yellow_pin=18, green_pin=27, mode=DeviceMode.SIMULATION ) # Initialize the device await traffic_light.initialize() # Register state change callback def on_state_changed(event, data): print(f"Traffic light state changed to: {data.get('state')}") traffic_light.register_event_callback("state_changed", on_state_changed) # Manual state control print("Setting traffic light to RED") await traffic_light.set_state(TrafficLightState.RED) await asyncio.sleep(2) print("Setting traffic light to YELLOW") await traffic_light.set_state(TrafficLightState.YELLOW) await asyncio.sleep(2) print("Setting traffic light to GREEN") await traffic_light.set_state(TrafficLightState.GREEN) await asyncio.sleep(2) # Start automatic cycling print("Starting automatic cycle") await traffic_light.start_cycle() # Let it cycle for a while await asyncio.sleep(10) # Stop cycling print("Stopping cycle") await traffic_light.stop_cycle() # Turn off all lights print("Turning off all lights") await traffic_light.set_state(TrafficLightState.OFF) # Cleanup await traffic_light.cleanup() if __name__ == "__main__": asyncio.run(traffic_light_example())

Display Text and Counter

This example shows how to use a display device:

import asyncio from unitmcp.hardware.display import DisplayDevice, DisplayType from unitmcp.hardware.base import DeviceMode async def display_example(): # Create a display device in simulation mode display = DisplayDevice( device_id="example_display", display_type=DisplayType.LCD, width=16, height=2, mode=DeviceMode.SIMULATION ) # Initialize the device await display.initialize() # Write text to display print("Writing text to display") await display.clear() await display.write_line("Hello, UnitMCP!", line=0) await display.write_line("Hardware Demo", line=1) await asyncio.sleep(2) # Update content with a counter print("Updating display content") await display.clear() await display.write_text("Count: ", position=(0, 0)) for i in range(5): await display.set_cursor(position=(7, 0)) await display.write_text(str(i)) await asyncio.sleep(0.5) # Toggle backlight print("Toggling backlight") await display.set_backlight(False) await asyncio.sleep(1) await display.set_backlight(True) # Cleanup await display.cleanup() if __name__ == "__main__": asyncio.run(display_example())

Device Factory Usage

This example demonstrates using the device factory to create devices:

import asyncio from unitmcp.hardware.device_factory import create_device, create_devices_from_config from unitmcp.hardware.base import DeviceType, DeviceMode async def factory_example(): # Create devices directly using the factory print("Creating devices using factory") led = await create_device( factory_type="simulation", device_id="factory_led", device_type=DeviceType.LED, pin=17 ) button = await create_device( factory_type="simulation", device_id="factory_button", device_type=DeviceType.BUTTON, pin=27 ) # Use the created devices print("Using factory-created devices") await led.activate() await asyncio.sleep(1) await led.deactivate() # Create devices from configuration print("Creating devices from configuration") config = { "devices": { "config_led": { "type": "led", "pin": 22 }, "config_button": { "type": "button", "pin": 23 }, "config_traffic_light": { "type": "traffic_light", "red_pin": 24, "yellow_pin": 25, "green_pin": 26 } } } devices = await create_devices_from_config( config=config, factory_type="simulation" ) # Use a device from the configuration traffic_light = devices["config_traffic_light"] await traffic_light.set_state("GREEN") await asyncio.sleep(1) await traffic_light.set_state("OFF") # Cleanup all devices for device in [led, button, *devices.values()]: await device.cleanup() if __name__ == "__main__": asyncio.run(factory_example())

Complete Interactive System Example

This example demonstrates a complete interactive system that combines multiple hardware devices to create a traffic light controller with button input and display feedback:

import asyncio import logging import yaml from unitmcp.hardware.device_factory import create_devices_from_config from unitmcp.hardware.traffic_light import TrafficLightState from unitmcp.utils.env_loader import EnvLoader # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Sample configuration CONFIG = """ devices: traffic_light: type: traffic_light red_pin: 17 yellow_pin: 18 green_pin: 27 pedestrian_button: type: button pin: 22 pull_up: true debounce_ms: 50 status_display: type: display display_type: lcd width: 16 height: 2 i2c_address: 0x27 """ class TrafficLightController: def __init__(self): self.devices = None self.running = False self.pedestrian_waiting = False self.current_state = None self.env = EnvLoader() async def initialize(self): """Initialize all devices from configuration""" # Load configuration config = yaml.safe_load(CONFIG) # Determine mode based on environment factory_type = "hardware" if self.env.get_bool("SIMULATION_MODE", True): factory_type = "simulation" logger.info("Running in SIMULATION mode") else: logger.info("Running in HARDWARE mode") # Create all devices self.devices = await create_devices_from_config( config=config, factory_type=factory_type ) # Get individual devices self.traffic_light = self.devices["traffic_light"] self.button = self.devices["pedestrian_button"] self.display = self.devices["status_display"] # Register button callback self.button.register_event_callback("pressed", self.on_button_pressed) # Register traffic light state change callback self.traffic_light.register_event_callback("state_changed", self.on_state_changed) # Initialize display await self.display.clear() await self.display.write_line("Traffic System", line=0) await self.display.write_line("Initializing...", line=1) logger.info("Traffic light controller initialized") return True async def on_button_pressed(self, event, data): """Handle pedestrian button press""" logger.info(f"Pedestrian button pressed at {data.get('timestamp')}") # Set pedestrian waiting flag self.pedestrian_waiting = True # Update display await self.display.set_cursor(position=(0, 1)) await self.display.write_line("Pedestrian wait", line=1) async def on_state_changed(self, event, data): """Handle traffic light state changes""" state = data.get('state') self.current_state = state logger.info(f"Traffic light changed to {state}") # Update display with current state await self.display.set_cursor(position=(0, 0)) await self.display.write_line(f"State: {state} ", line=0) async def run_traffic_cycle(self): """Run the main traffic light cycle""" self.running = True # Initial state await self.display.clear() await self.display.write_line("State: STARTING", line=0) await self.display.write_line("System ready", line=1) # Start with red await self.traffic_light.set_state(TrafficLightState.RED) await asyncio.sleep(2) while self.running: # Normal cycle: RED -> GREEN -> YELLOW -> RED # GREEN phase await self.traffic_light.set_state(TrafficLightState.GREEN) # Stay green for a while, but check for pedestrian button presses green_time = 0 while green_time >MCPServer: connect() MCPServer->>Client: connection_established Client->>MCPServer: control_device(device_id, command) MCPServer->>DeviceManager: get_device(device_id) DeviceManager->>MCPServer: device MCPServer->>Device: execute_command(command) Device->>MCPServer: result MCPServer->>Client: command_result

Flowchart

flowchart TD A[Start] --> B{Is Hardware Available?} B -->|Yes| C[Initialize Hardware] B -->|No| D[Start Simulation] C --> E[Setup Devices] D --> E E --> F[Start Server] F --> G[Wait for Connections] G --> H{Connection Request?} H -->|Yes| I[Handle Connection] H -->|No| G I --> J[Process Commands] J --> G

Class Diagram

classDiagram class Device { +String device_id +DeviceType type +Boolean is_connected +connect() +disconnect() +execute_command() } class LEDDevice { +int pin +Boolean state +turn_on() +turn_off() +blink() } class ButtonDevice { +int pin +Boolean state +read_state() +wait_for_press() } Device Disconnected Disconnected --> Connecting: connect() Connecting --> Connected: success Connecting --> Error: failure Connected --> Processing: receive_command() Processing --> Connected: command_complete Connected --> Disconnecting: disconnect() Error --> Disconnected: reset() Disconnecting --> Disconnected: complete Disconnected --> [*]

Entity Relationship Diagram

erDiagram SERVER ||--o{ DEVICE : manages SERVER { string server_id int port boolean ssl_enabled } DEVICE { string device_id string type boolean is_connected } DEVICE ||--o{ PROPERTY : has PROPERTY { string name string value string data_type } USER ||--o{ SERVER : connects USER { string username string password_hash string role }

Gantt Chart

gantt title UnitMCP Development Timeline dateFormat YYYY-MM-DD section Planning Requirements Analysis :a1, 2025-01-01, 30d Architecture Design :a2, after a1, 45d section Development Core Framework :d1, after a2, 60d Hardware Abstraction :d2, after a2, 45d Server Implementation :d3, after d1, 30d section Testing Unit Testing :t1, after d2, 20d Integration Testing :t2, after d3, 30d User Acceptance Testing :t3, after t2, 15d section Deployment Documentation :p1, after t3, 15d Release :milestone, after p1, 0d

Pie Chart

pie title UnitMCP Component Distribution "Hardware Abstraction" : 30 "Server Framework" : 25 "Client Libraries" : 15 "Documentation" : 10 "Testing" : 15 "Utilities" : 5

Git Graph

gitGraph commit branch develop checkout develop commit commit branch feature/hardware checkout feature/hardware commit commit checkout develop merge feature/hardware branch feature/server checkout feature/server commit checkout develop merge feature/server checkout main merge develop commit

User Journey

journey title UnitMCP User Journey section Installation Download Package: 5: User Install Dependencies: 3: User Run Setup Script: 4: User section Configuration Edit Config File: 3: User Set Up Devices: 4: User Configure Network: 3: User section Usage Start Server: 5: User Connect Client: 4: User Control Devices: 5: User

These diagrams can be used throughout the documentation to visualize system architecture, processes, and relationships between components.

✍

import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.esm.min.mjs'; //import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@10.8.0/dist/mermaid.min.js'; mermaid.initialize({ startOnReady:true, theme: 'forest', flowchart:{ useMaxWidth:false, htmlLabels:true } }); mermaid.init(undefined, '.language-mermaid');

Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • ERPNext MCP Server
    ERPNext MCP Server

    A TypeScript-based server that enables AI assistants to interact with ERPNext/Frappe systems through...

    Added May 30, 2025
  • Powertools MCP Search Server
    Powertools MCP Search Server

    Enables LLMs to search through AWS Lambda Powertools documentation across multiple runtimes (Python,...

    2 tools
    Added May 30, 2025
  • Jira MCP Server
    Jira MCP Server

    A Model Context Protocol server that enables AI assistants like Claude to interact with Jira, allowi...

    Added May 30, 2025
  • MCP Apple Reminders
    MCP Apple Reminders

    A Model Context Protocol server that enables AI assistants to interact with Apple Reminders on macOS...

    Added May 30, 2025
  • sourcesage
    sourcesage

    SourceSage is an MCP (Model Context Protocol) server that efficiently memorizes key aspects of a cod...

    Added May 30, 2025