A Model Context Protocol server that enables AI assistants to interact with Kubernetes clusters through natural language, supporting core Kubernetes operations, monitoring, security, and diagnostics.
A Model Context Protocol (MCP) server for Kubernetes that enables AI assistants like Claude, Cursor, and others to interact with Kubernetes clusters through natural language.
kubectl-mcp-tool
in Action with Claude!kubectl-mcp-tool
in Action with Cursor!kubectl-mcp-tool
in Action with Windsurf!The Kubectl MCP Tool implements the Model Context Protocol (MCP), enabling AI assistants to interact with Kubernetes clusters through a standardized interface. The architecture consists of:
The tool operates in two modes:
For detailed installation instructions, please see the Installation Guide.
You can install kubectl-mcp-tool directly from PyPI:
pip install kubectl-mcp-tool
For a specific version:
pip install kubectl-mcp-tool==1.1.1
The package is available on PyPI: https://pypi.org/project/kubectl-mcp-tool/1.1.1/
# Install latest version from PyPI pip install kubectl-mcp-tool # Or install development version from GitHub pip install git+https://github.com/rohitg00/kubectl-mcp-server.git
# Clone the repository git clone https://github.com/rohitg00/kubectl-mcp-server.git cd kubectl-mcp-server # Install in development mode pip install -e .
After installation, verify the tool is working correctly:
# Check CLI mode kubectl-mcp --help
Note: This tool is designed to work as an MCP server that AI assistants connect to, not as a direct kubectl replacement. The primary command available is kubectl-mcp serve
which starts the MCP server.
The MCP Server (kubectl_mcp_tool.mcp_server
) is a robust implementation built on the FastMCP SDK that provides enhanced compatibility across different AI assistants:
Note: If you encounter any errors with the MCP Server implementation, you can fall back to using the minimal wrapper by replacing
kubectl_mcp_tool.mcp_server
withkubectl_mcp_tool.minimal_wrapper
in your configuration. The minimal wrapper provides basic capabilities with simpler implementation.
Direct Configuration
{ "mcpServers": { "kubernetes": { "command": "python", "args": ["-m", "kubectl_mcp_tool.mcp_server"], "env": { "KUBECONFIG": "/path/to/your/.kube/config", "PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin", "MCP_LOG_FILE": "/path/to/logs/debug.log", "MCP_DEBUG": "1" } } } }
Key Environment Variables
MCP_LOG_FILE
: Path to log file (recommended to avoid stdout pollution)MCP_DEBUG
: Set to "1" for verbose loggingMCP_TEST_MOCK_MODE
: Set to "1" to use mock data instead of real clusterKUBECONFIG
: Path to your Kubernetes config fileKUBECTL_MCP_LOG_LEVEL
: Set to "DEBUG", "INFO", "WARNING", or "ERROR"Testing the MCP Server You can test if the server is working correctly with:
python -m kubectl_mcp_tool.simple_ping
This will attempt to connect to the server and execute a ping command.
Alternatively, you can directly run the server with:
python -m kubectl_mcp_tool
Add the following to your Claude Desktop configuration at ~/.config/claude/mcp.json
(Windows: %APPDATA%\Claude\mcp.json
):
{ "mcpServers": { "kubernetes": { "command": "python", "args": ["-m", "kubectl_mcp_tool.mcp_server"], "env": { "KUBECONFIG": "/path/to/your/.kube/config" } } } }
Add the following to your Cursor AI settings under MCP by adding a new global MCP server:
{ "mcpServers": { "kubernetes": { "command": "python", "args": ["-m", "kubectl_mcp_tool.mcp_server"], "env": { "KUBECONFIG": "/path/to/your/.kube/config", "PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/homebrew/bin" } } } }
Save this configuration to ~/.cursor/mcp.json
for global settings.
Note: Replace
/path/to/your/.kube/config
with the actual path to your kubeconfig file. On most systems, this is~/.kube/config
.
Add the following to your Windsurf configuration at ~/.config/windsurf/mcp.json
(Windows: %APPDATA%\WindSurf\mcp.json
):
{ "mcpServers": { "kubernetes": { "command": "python", "args": ["-m", "kubectl_mcp_tool.mcp_server"], "env": { "KUBECONFIG": "/path/to/your/.kube/config" } } } }
For automatic configuration of all supported AI assistants, run the provided installation script:
bash install.sh
This script will:
List all pods in the default namespace
Create a deployment named nginx-test with 3 replicas using the nginx:latest image
Get logs from the nginx-test pod
Forward local port 8080 to port 80 on the nginx-test pod
# Clone the repository git clone https://github.com/rohitg00/kubectl-mcp-server.git cd kubectl-mcp-server # Install dependencies pip install -r requirements.txt # Install in development mode pip install -e . # Run the MCP server python -m kubectl_mcp_tool # Run tests python -m python_tests.run_mcp_tests
├── kubectl_mcp_tool/ # Main package
│ ├── __init__.py # Package initialization
│ ├── __main__.py # Package entry point
│ ├── cli.py # CLI entry point
│ ├── mcp_server.py # MCP server implementation
│ ├── mcp_kubectl_tool.py # Main kubectl MCP tool implementation
│ ├── natural_language.py # Natural language processing
│ ├── diagnostics.py # Diagnostics functionality
│ ├── core/ # Core functionality
│ ├── security/ # Security operations
│ ├── monitoring/ # Monitoring functionality
│ ├── utils/ # Utility functions
│ └── cli/ # CLI functionality components
├── python_tests/ # Test suite
│ ├── run_mcp_tests.py # Test runner script
│ ├── mcp_client_simulator.py # MCP client simulator for mock testing
│ ├── test_utils.py # Test utilities
│ ├── test_mcp_core.py # Core MCP tests
│ ├── test_mcp_security.py # Security tests
│ ├── test_mcp_monitoring.py # Monitoring tests
│ ├── test_mcp_nlp.py # Natural language tests
│ ├── test_mcp_diagnostics.py # Diagnostics tests
│ └── mcp_test_strategy.md # Test strategy documentation
├── docs/ # Documentation
│ ├── README.md # Documentation overview
│ ├── INSTALLATION.md # Installation guide
│ ├── integration_guide.md # Integration guide
│ ├── cursor/ # Cursor integration docs
│ ├── windsurf/ # Windsurf integration docs
│ └── claude/ # Claude integration docs
├── compatible_servers/ # Compatible MCP server implementations
│ ├── cursor/ # Cursor-compatible servers
│ ├── windsurf/ # Windsurf-compatible servers
│ ├── minimal/ # Minimal server implementations
│ └── generic/ # Generic MCP servers
├── requirements.txt # Python dependencies
├── setup.py # Package setup script
├── pyproject.toml # Project configuration
├── MANIFEST.in # Package manifest
├── mcp_config.json # Sample MCP configuration
├── run_server.py # Server runner script
├── LICENSE # MIT License
├── CHANGELOG.md # Version history
├── .gitignore # Git ignore file
├── install.sh # Installation script
├── publish.sh # PyPI publishing script
└── start_mcp_server.sh # Server startup script
The MCP Server implementation (kubectl_mcp_tool.mcp_server
) provides a comprehensive set of 26 tools that can be used by AI assistants to interact with Kubernetes clusters:
All tools return structured data with success/error information and relevant details, making it easy for AI assistants to process and understand the responses.
Contributions are welcome! Please feel free to submit a Pull Request.
git checkout -b feature/amazing-feature
)git commit -m 'Add some amazing feature'
)git push origin feature/amazing-feature
)This project is licensed under the MIT License - see the LICENSE file for details.
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!