Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • S3 MCP Server
  • File Finder MCP Server
  • OWASP Cheatsheets MCP Server
  • MCP Server
  • Steel Puppeteer
Back to MCP Servers
Voice Recognition MCP Service

Voice Recognition MCP Service

Public
yangsenessa/mcp_voice_identify

Provides voice recognition and text extraction services with support for file and base64 audio inputs, delivering structured, AIO protocol-compliant responses via Model Context Protocol (MCP) and stdio modes.

python
0 tools
May 29, 2025
Updated Jun 4, 2025

Supercharge Your AI with Voice Recognition MCP Service

MCP Server

Unlock the full potential of Voice Recognition MCP Service through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.

Unified API Access
Complete Tracing
Instant Setup
Get Started Now

Free tier available • No credit card required

Instant Setup
99.9% Uptime
10,000+Monthly Requests

Voice Recognition MCP Service

This service provides voice recognition and text extraction capabilities through both stdio and MCP modes.

Features

  • Voice recognition from file
  • Voice recognition from base64 encoded data
  • Text extraction
  • Support for both stdio and MCP modes
  • Structured voice recognition results
  • AIO protocol compliant responses

Project Structure

  • voice_service.py - Core service implementation
  • stdio_server.py - stdio mode entry point
  • mcp_server.py - MCP mode entry point
  • build.py - Build script for executables
  • build_exec.sh - Build execution script
  • test_*.sh - Test scripts for different functionalities

Installation

  1. Clone the repository:
git clone https://github.com/AIO-2030/mcp_voice_identify.git cd mcp_voice_identify
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables in .env:
API_URL=your_api_url
API_KEY=your_api_key

Usage

stdio Mode

  1. Run the service:
python stdio_server.py
  1. Send JSON-RPC requests via stdin:
{ "jsonrpc": "2.0", "method": "help", "params": {}, "id": 1 }
  1. Or use the executable:
./dist/voice_stdio

MCP Mode

  1. Run the service:
python mcp_server.py
  1. Or use the executable:
./dist/voice_mcp

Response Format

The service follows the AIO protocol for response formatting. Here are examples of different response types:

Voice Recognition Response

{ "jsonrpc": "2.0", "output": { "type": "voice", "message": "Voice processed successfully", "text": "test test test", "metadata": { "language": "en", "emotion": "unknown", "audio_type": "speech", "speaker": "woitn", "raw_text": "test test test" } }, "id": 1 }

Help Information Response

{ "jsonrpc": "2.0", "result": { "type": "voice_service", "description": "This service provides voice recognition and text extraction services", "author": "AIO-2030", "version": "1.0.0", "github": "https://github.com/AIO-2030/mcp_voice_identify", "transport": ["stdio"], "methods": [ { "name": "help", "description": "Show this help information." }, { "name": "identify_voice", "description": "Identify voice from file", "inputSchema": { "type": "object", "properties": { "file_path": { "type": "string", "description": "Voice file path" } }, "required": ["file_path"] } }, { "name": "identify_voice_base64", "description": "Identify voice from base64 encoded data", "inputSchema": { "type": "object", "properties": { "base64_data": { "type": "string", "description": "Base64 encoded voice data" } }, "required": ["base64_data"] } }, { "name": "extract_text", "description": "Extract text", "inputSchema": { "type": "object", "properties": { "text": { "type": "string", "description": "Text to extract" } }, "required": ["text"] } } ] }, "id": 1 }

Error Response

{ "jsonrpc": "2.0", "output": { "type": "error", "message": "503 Server Error: Service Unavailable", "error_code": 503 }, "id": 1 }

Response Fields

The service provides three types of responses:

  1. Voice Recognition Response (using output field): | Field | Description | Example Value | |-----------|--------------------------------------|---------------| | type | Response type | "voice" | | message | Status message | "Voice processed successfully" | | text | Recognized text content | "test test test" | | metadata | Additional information | See below |

  2. Help Information Response (using result field): | Field | Description | Example Value | |---------------|--------------------------------------|---------------| | type | Service type | "voice_service" | | description | Service description | "This service provides..." | | author | Service author | "AIO-2030" | | version | Service version | "1.0.0" | | github | GitHub repository URL | "https://github.com/..." | | transport | Supported transport modes | ["stdio"] | | methods | Available methods | See methods list |

  3. Error Response (using output field): | Field | Description | Example Value | |-------------|--------------------------------------|---------------| | type | Response type | "error" | | message | Error message | "503 Server Error: Service Unavailable" | | error_code | HTTP status code | 503 |

Metadata Fields

The metadata field in voice recognition responses contains:

FieldDescriptionExample Value
languageLanguage code"en"
emotionEmotion state"unknown"
audio_typeAudio type"speech"
speakerSpeaker identifier"woitn"
raw_textOriginal recognized text"test test test"

Building Executables

  1. Make the build script executable:
chmod +x build_exec.sh
  1. Build stdio mode executable:
./build_exec.sh
  1. Build MCP mode executable:
./build_exec.sh mcp

The executables will be created at:

  • stdio mode: dist/voice_stdio
  • MCP mode: dist/voice_mcp

Testing

Run the test scripts:

chmod +x test_*.sh ./test_help.sh ./test_voice_file.sh ./test_voice_base64.sh

License

This project is licensed under the MIT License - see the LICENSE file for details.

Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • S3 MCP Server
    S3 MCP Server

    Provides Model Context Protocol (MCP) tools for seamless interaction with AWS S3, enabling listing o...

    3 tools
    Added May 30, 2025
  • File Finder MCP Server
    File Finder MCP Server

    Provides Model Context Protocol (MCP) services for efficient file searching by filename fragment and...

    1 tools
    Added May 30, 2025
  • OWASP Cheatsheets MCP Server
    OWASP Cheatsheets MCP Server

    Minimal Model Context Protocol (MCP) server delivering OWASP Cheat Sheets via a FastAPI HTTP API wit...

    Added May 30, 2025
  • MCP Server
    MCP Server

    Provides greeting-related tools, resources, and prompts via Model Context Protocol (MCP), enabling p...

    Added May 30, 2025
  • Steel Puppeteer
    Steel Puppeteer

    Model Context Protocol server enabling advanced browser automation with Puppeteer, offering web navi...

    Added May 30, 2025