Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • Vertex AI MCP Server
  • IR Toolshed MCP Server
  • Gemini MCP Image Generation Server
  • Root Signals MCP Server
  • MCP Server for Intercom
Back to MCP Servers
R Econometrics MCP Server

R Econometrics MCP Server

Public
gojiplus/rmcp

Provides advanced econometric modeling and data analysis via Model Context Protocol, enabling AI assistants to perform linear regression, panel data analysis, instrumental variables estimation, diagnostic testing, and descriptive statistics using R.

python
0 tools
May 30, 2025
Updated Jun 4, 2025

Supercharge Your AI with R Econometrics MCP Server

MCP Server

Unlock the full potential of R Econometrics MCP Server through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.

Unified API Access
Complete Tracing
Instant Setup
Get Started Now

Free tier available • No credit card required

Instant Setup
99.9% Uptime
10,000+Monthly Requests

R MCP Server

A Model Context Protocol (MCP) server that provides advanced econometric modeling and data analysis capabilities through R. This server enables AI assistants to perform sophisticated econometric and statistical analyses seamlessly, helping you quickly gain insights from your data.

Features

  • Linear Regression: Run linear models with optional robust standard errors.
  • Panel Data Analysis: Estimate fixed effects, random effects, pooling, between, and first-difference models.
  • Instrumental Variables: Build and estimate IV regression models.
  • Diagnostic Tests: Assess heteroskedasticity, autocorrelation, and model misspecification.
  • Descriptive Statistics: Generate summary statistics for datasets using R’s summary() functionality.
  • Correlation Analysis: Compute Pearson or Spearman correlations between variables.
  • Group-By Aggregations: Group data by specified columns and compute summary statistics using dplyr.
  • Resources: Access reference documentation for various econometric techniques.
  • Prompts: Use pre-defined prompt templates for common econometric analyses.

Installation

Using Docker (Recommended)

  1. Build the Docker image:

    docker build -t r-econometrics-mcp .
  2. Run the container:

docker run -it r-econometrics-mcp

Manual Installation

Install the required Python packages:

pip install -r requirements.txt

Install the required R packages (if you run the server outside a container):

install.packages(c("plm", "lmtest", "sandwich", "AER", "jsonlite"), repos="https://cloud.r-project.org/")

Run the server:

python rmcp.py

Usage

The server communicates via standard input/output. When you run:

python rmcp.py

it starts and waits for JSON messages on standard input. To test the server manually, create a file (for example, test_request.json) with a compact (single-line) JSON message.

Example Test

Create test_request.json with the following content (a one-line JSON):

{"tool": "linear_model", "args": {"formula": "y ~ x1", "data": {"x1": [1,2,3,4,5], "y": [1,3,5,7,9]}, "robust": false}}

Then run:

cat test_request.json | python rmcp.py

Output

{"coefficients": {"(Intercept)": -1, "x1": 2}, "std_errors": {"(Intercept)": 2.8408e-16, "x1": 8.5654e-17}, "t_values": {"(Intercept)": -3520120717017444, "x1": 23349839270207356}, "p_values": {"(Intercept)": 5.0559e-47, "x1": 1.7323e-49}, "r_squared": 1, "adj_r_squared": 1, "sigma": 2.7086e-16, "df": [2, 3, 2], "model_call": "lm(formula = formula, data = data)", "robust": false}

Usage with Claude Desktop

  1. Launch Claude Desktop
  2. Open the MCP Servers panel
  3. Add a new server with the following configuration:
    • Name: R Econometrics
    • Transport: stdio
    • Command: path/to/python r_econometrics_mcp.py
    • (Or if using Docker): docker run -i r-econometrics-mcp

Example Queries

Here are some example queries you can use with Claude once the server is connected:

Linear Regression

Can you analyze the relationship between price and mpg in the mtcars dataset using linear regression?

Panel Data Analysis

I have panel data with variables gdp, investment, and trade for 30 countries over 20 years. Can you help me determine if a fixed effects or random effects model is more appropriate?

Instrumental Variables

I'm trying to estimate the causal effect of education on wages, but I'm concerned about endogeneity. Can you help me set up an instrumental variables regression?

Diagnostic Tests

After running my regression model, I'm concerned about heteroskedasticity. Can you run appropriate diagnostic tests and suggest corrections if needed?

Tools Reference

linear_model

Run a linear regression model.

Parameters:

  • formula (string): The regression formula (e.g., 'y ~ x1 + x2')
  • data (object): Dataset as a dictionary/JSON object
  • robust (boolean, optional): Whether to use robust standard errors

panel_model

Run a panel data model.

Parameters:

  • formula (string): The regression formula (e.g., 'y ~ x1 + x2')
  • data (object): Dataset as a dictionary/JSON object
  • index (array): Panel index variables (e.g., ['individual', 'time'])
  • effect (string, optional): Type of effects: 'individual', 'time', or 'twoways'
  • model (string, optional): Model type: 'within', 'random', 'pooling', 'between', or 'fd'

diagnostics

Perform model diagnostics.

Parameters:

  • formula (string): The regression formula (e.g., 'y ~ x1 + x2')
  • data (object): Dataset as a dictionary/JSON object
  • tests (array): Tests to run (e.g., ['bp', 'reset', 'dw'])

iv_regression

Estimate instrumental variables regression.

Parameters:

  • formula (string): The regression formula (e.g., 'y ~ x1 + x2 | z1 + z2')
  • data (object): Dataset as a dictionary/JSON object

Resources

  • econometrics:formulas: Information about common econometric model formulations
  • econometrics:diagnostics: Reference for diagnostic tests
  • econometrics:panel_data: Guide to panel data analysis in R

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT License

Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • Vertex AI MCP Server
    Vertex AI MCP Server

    Provides a Model Context Protocol server enabling advanced interaction with Google Cloud's Vertex AI...

    20 tools
    Added May 30, 2025
  • IR Toolshed MCP Server
    IR Toolshed MCP Server

    Provides a Model Context Protocol (MCP) service offering advanced network incident response tools in...

    Added May 30, 2025
  • Gemini MCP Image Generation Server
    Gemini MCP Image Generation Server

    Provides image generation capabilities via Google's Gemini 2 API using the Model Context Protocol, e...

    1 tools
    Added May 30, 2025
  • Root Signals MCP Server
    Root Signals MCP Server

    Bridges Root Signals API with Model Context Protocol clients to enable AI assistants and agents to p...

    Added May 30, 2025
  • MCP Server for Intercom
    MCP Server for Intercom

    Enables AI assistants to access, search, and filter Intercom customer support conversations and tick...

    4 tools
    Added May 30, 2025