Provides access to PyTorch CI/CD analytics data including workflows, jobs, test runs, and log analysis through an MCP interface.
A Python library and MCP server for interacting with the PyTorch HUD API, providing access to CI/CD data, job logs, and analytics.
This project provides tools for PyTorch CI/CD analytics including:
# Install from GitHub repository pip install git+https://github.com/izaitsevfb/claude-pytorch-treehugger.git
claude mcp add hud pytorch-hud
# Install dependencies (if not installing with pip) pip install -r requirements.txt # Start MCP server python -m pytorch_hud
get_commit_summary
: Basic commit info without jobsget_job_summary
: Aggregated job status countsget_filtered_jobs
: Jobs with filtering by status/workflow/nameget_failure_details
: Failed jobs with detailed failure infoget_recent_commit_status
: Status for recent commits with job statisticsdownload_log_to_file
: Download logs to local storageextract_log_patterns
: Find errors, warnings, etc.extract_test_results
: Parse test execution resultsfilter_log_sections
: Extract specific log sectionssearch_logs
: Search across multiple logs# Run tests python -m unittest discover test # Type checking mypy -p pytorch_hud -p test # Linting ruff check pytorch_hud/ test/
MIT
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!