Enables users to generate parametric 3D models from text descriptions or images using multi-view reconstruction and OpenSCAD, with support for AI image generation and remote processing.
A Model Context Protocol (MCP) server that enables users to generate 3D models from text descriptions or images, with a focus on creating parametric 3D models using multi-view reconstruction and OpenSCAD.
The server is built using the Python MCP SDK and follows a modular architecture:
openscad-mcp-server/
├── src/
│ ├── main.py # Main application
│ ├── main_remote.py # Remote CUDA MVS server
│ ├── ai/ # AI integrations
│ │ ├── gemini_api.py # Google Gemini API for image generation
│ │ └── venice_api.py # Venice.ai API for image generation (optional)
│ ├── models/ # 3D model generation
│ │ ├── cuda_mvs.py # CUDA Multi-View Stereo integration
│ │ └── code_generator.py # OpenSCAD code generation
│ ├── workflow/ # Workflow components
│ │ ├── image_approval.py # Image approval mechanism
│ │ └── multi_view_to_model_pipeline.py # Complete pipeline
│ ├── remote/ # Remote processing
│ │ ├── cuda_mvs_client.py # Client for remote CUDA MVS processing
│ │ ├── cuda_mvs_server.py # Server for remote CUDA MVS processing
│ │ ├── connection_manager.py # Remote connection management
│ │ └── error_handling.py # Error handling for remote processing
│ ├── openscad_wrapper/ # OpenSCAD CLI wrapper
│ ├── visualization/ # Preview generation and web interface
│ ├── utils/ # Utility functions
│ └── printer_discovery/ # 3D printer discovery
├── scad/ # Generated OpenSCAD files
├── output/ # Output files (models, previews)
│ ├── images/ # Generated images
│ ├── multi_view/ # Multi-view images
│ ├── approved_images/ # Approved images for reconstruction
│ └── models/ # Generated 3D models
├── templates/ # Web interface templates
└── static/ # Static files for web interface
Clone the repository:
git clone https://github.com/jhacksman/OpenSCAD-MCP-Server.git
cd OpenSCAD-MCP-Server
Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
Install dependencies:
pip install -r requirements.txt
Install OpenSCAD:
sudo apt-get install openscad
brew install openscad
Install CUDA Multi-View Stereo:
git clone https://github.com/fixstars/cuda-multi-view-stereo.git
cd cuda-multi-view-stereo
mkdir build && cd build
cmake ..
make
Set up API keys:
.env
file in the root directoryGEMINI_API_KEY=your-gemini-api-key
VENICE_API_KEY=your-venice-api-key # Optional
REMOTE_CUDA_MVS_API_KEY=your-remote-api-key # For remote processing
The server supports remote processing of computationally intensive tasks, particularly CUDA Multi-View Stereo reconstruction. This allows you to offload processing to more powerful machines within your LAN.
Install CUDA Multi-View Stereo on the server machine:
git clone https://github.com/fixstars/cuda-multi-view-stereo.git
cd cuda-multi-view-stereo
mkdir build && cd build
cmake ..
make
Start the remote CUDA MVS server:
python src/main_remote.py
The server will automatically advertise itself on the local network using Zeroconf.
Configure remote processing in your .env
file:
REMOTE_CUDA_MVS_ENABLED=True
REMOTE_CUDA_MVS_USE_LAN_DISCOVERY=True
REMOTE_CUDA_MVS_API_KEY=your-shared-secret-key
Alternatively, you can specify a server URL directly:
REMOTE_CUDA_MVS_ENABLED=True
REMOTE_CUDA_MVS_USE_LAN_DISCOVERY=False
REMOTE_CUDA_MVS_SERVER_URL=http://server-ip:8765
REMOTE_CUDA_MVS_API_KEY=your-shared-secret-key
Start the server:
python src/main.py
The server will start on http://localhost:8000
Use the MCP tools to interact with the server:
generate_image_gemini: Generate an image using Google Gemini API
{ "prompt": "A low-poly rabbit with black background", "model": "gemini-2.0-flash-exp-image-generation" }
generate_multi_view_images: Generate multiple views of the same 3D object
{ "prompt": "A low-poly rabbit", "num_views": 4 }
create_3d_model_from_images: Create a 3D model from approved multi-view images
{ "image_ids": ["view_1", "view_2", "view_3", "view_4"], "output_name": "rabbit_model" }
create_3d_model_from_text: Complete pipeline from text to 3D model
{ "prompt": "A low-poly rabbit", "num_views": 4 }
export_model: Export a model to a specific format
{ "model_id": "your-model-id", "format": "obj" // or "stl", "ply", "scad", etc. }
discover_remote_cuda_mvs_servers: Find CUDA MVS servers on your network
{ "timeout": 5 }
get_remote_job_status: Check the status of a remote processing job
{ "server_id": "server-id", "job_id": "job-id" }
download_remote_model_result: Download a completed model from a remote server
{ "server_id": "server-id", "job_id": "job-id", "output_name": "model-name" }
discover_printers: Discover 3D printers on the network
{}
print_model: Print a model on a connected printer
{ "model_id": "your-model-id", "printer_id": "your-printer-id" }
The server supports multiple image generation options:
Google Gemini API (Default): Uses the Gemini 2.0 Flash Experimental model for high-quality image generation
Venice.ai API (Optional): Alternative image generation service
User-Provided Images: Skip image generation and use your own images
The server implements a multi-view workflow for 3D reconstruction:
The remote processing workflow allows you to offload computationally intensive tasks to more powerful machines:
The server supports exporting models in various formats:
The server provides a web interface for:
Access the interface at http://localhost:8000/ui/
MIT
Contributions are welcome! Please feel free to submit a Pull Request.
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!