Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • mcp-server-asana
  • Perplexity AI MCP Server
  • Sanity MCP Server
  • sanderkooger-mcp-server-ragdocs
  • Ollama MCP Server
Back to MCP Servers
MyAIServ MCP Server

MyAIServ MCP Server

Public
eagurin/myaiserv

High-performance Model Context Protocol (MCP) API built with FastAPI offering standardized interaction between LLM models and applications, featuring full MCP support, real-time WebSocket communication, GraphQL API, semantic search, caching, and extensible tools for text, image, and data processing.

python
0 tools
May 30, 2025
Updated Jun 4, 2025

Supercharge Your AI with MyAIServ MCP Server

MCP Server

Unlock the full potential of MyAIServ MCP Server through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.

Unified API Access
Complete Tracing
Instant Setup
Get Started Now

Free tier available • No credit card required

Instant Setup
99.9% Uptime
10,000+Monthly Requests

MCP Server - Model Context Protocol API

MCP Server - это реализация Model Context Protocol (MCP) на базе FastAPI, предоставляющая стандартизированный интерфейс для взаимодействия между LLM-моделями и приложениями.

Особенности

  • 🚀 Высокопроизводительный API на базе FastAPI и асинхронных операций
  • 🔄 Полная поддержка MCP с ресурсами, инструментами, промптами и сэмплированием
  • 📊 Мониторинг и метрики через Prometheus и Grafana
  • 🧩 Расширяемость через простые интерфейсы для добавления новых инструментов
  • 📝 GraphQL API для гибкой работы с данными
  • 💬 WebSocket поддержка для реал-тайм взаимодействия
  • 🔍 Семантический поиск через интеграцию с Elasticsearch
  • 🗃️ Кэширование через Redis для улучшения производительности
  • 📦 Управление зависимостями через Poetry для надежного управления пакетами

Начало работы

Установка

  1. Клонировать репозиторий:

    git clone https://github.com/yourusername/myaiserv.git cd myaiserv
  2. Установить Poetry (если еще не установлен):

    curl -sSL https://install.python-poetry.org | python3 -
  3. Установить зависимости через Poetry:

    poetry install

Запуск сервера

poetry run uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload

Или через утилиту just:

just run

После запуска API доступен по адресу: http://localhost:8000

Документация API

  • Swagger UI: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc
  • GraphQL Playground: http://localhost:8000/graphql

Структура проекта

myaiserv/
├── app/
│   ├── core/             # Базовые компоненты MCP
│   │   ├── base_mcp.py   # Абстрактные классы MCP
│   │   └── base_sampling.py  # Базовые классы для сэмплирования
│   ├── models/           # Pydantic модели
│   │   ├── mcp.py        # Модели данных MCP
│   │   └── graphql.py    # GraphQL схема
│   ├── services/         # Бизнес-логика
│   │   └── mcp_service.py # Сервис MCP
│   ├── storage/          # Хранилище данных
│   ├── tools/            # Инструменты MCP
│   │   ├── example_tool.py   # Примеры инструментов
│   │   └── text_processor.py # Инструмент обработки текста
│   ├── utils/            # Утилиты
│   └── main.py           # Точка входа FastAPI
├── app/tests/            # Тесты
├── docs/                 # Документация
│   └── MCP_API.md        # Описание API
├── pyproject.toml        # Конфигурация Poetry и инструментов
└── .justfile             # Задачи для утилиты just

Доступные инструменты

File System Tool

Инструмент для работы с файловой системой, поддерживающий операции чтения, записи, удаления и листинга файлов.

curl -X POST "http://localhost:8000/tools/file_operations" \ -H "Content-Type: application/json" \ -d '{"operation": "list", "path": "."}'

Weather Tool

Инструмент для получения погодных данных по координатам.

curl -X POST "http://localhost:8000/tools/weather" \ -H "Content-Type: application/json" \ -d '{"latitude": 37.7749, "longitude": -122.4194}'

Text Analysis Tool

Инструмент для анализа текста, включая определение тональности и суммаризацию.

curl -X POST "http://localhost:8000/tools/text_analysis" \ -H "Content-Type: application/json" \ -d '{"text": "Example text for analysis", "analysis_type": "sentiment"}'

Text Processor Tool

Инструмент для обработки текста, включая форматирование, расчет статистики, извлечение сущностей.

curl -X POST "http://localhost:8000/tools/text_processor" \ -H "Content-Type: application/json" \ -d '{"operation": "statistics", "text": "Example text", "stat_options": ["chars", "words"]}'

Image Processing Tool

Инструмент для обработки изображений, поддерживающий изменение размера, обрезку и применение фильтров.

curl -X POST "http://localhost:8000/tools/image_processing" \ -H "Content-Type: application/json" \ -d '{"operation": "resize", "image_data": "base64...", "params": {"width": 800, "height": 600}}'

WebSocket API

Для подключения к WebSocket API:

const socket = new WebSocket("ws://localhost:8000/ws"); socket.onopen = () => { socket.send(JSON.stringify({ type: "initialize", id: "my-request-id" })); }; socket.onmessage = (event) => { const data = JSON.parse(event.data); console.log("Received:", data); };

GraphQL API

Примеры запросов через GraphQL:

# Получение списка всех инструментов query { getTools { name description } } # Выполнение инструмента mutation { executeTool(input: { name: "text_processor", parameters: { operation: "statistics", text: "Example text for analysis" } }) { content { type text } is_error } }

Запуск тестов

Для запуска тестов используйте Poetry:

poetry run pytest

Или через утилиту just:

just test

Docker

Сборка и запуск через Docker Compose

docker compose up -d

Для запуска отдельных сервисов:

docker compose up -d web redis elasticsearch

Интеграция с LLM

MCP Server предоставляет стандартизированный интерфейс для интеграции с LLM-моделями различных поставщиков:

import httpx async def query_mcp_with_llm(prompt: str): async with httpx.AsyncClient() as client: # Запрос к MCP для получения контекста и инструментов tools_response = await client.get("http://localhost:8000/tools") tools = tools_response.json()["tools"] # Отправка запроса к LLM с включением MCP контекста llm_response = await client.post( "https://api.example-llm.com/v1/chat", json={ "messages": [ {"role": "system", "content": "You have access to the following tools:"}, {"role": "user", "content": prompt} ], "tools": tools, "tool_choice": "auto" } ) return llm_response.json()

Метрики и мониторинг

MCP Server предоставляет метрики в формате Prometheus по эндпоинту /metrics. Метрики включают:

  • Количество запросов к каждому инструменту
  • Время выполнения запросов
  • Ошибки и исключения

Разработка

Для форматирования кода и проверки линтерами:

just fmt just lint

Лицензия

MIT License

Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • mcp-server-asana
    mcp-server-asana

    Enables seamless interaction with Asana API via Model Context Protocol, providing advanced task, pro...

    22 tools
    Added May 30, 2025
  • Perplexity AI MCP Server
    Perplexity AI MCP Server

    Provides seamless integration with Perplexity AI via Model Context Protocol, enabling chat, search, ...

    5 tools
    Added May 30, 2025
  • Sanity MCP Server
    Sanity MCP Server

    Connect Sanity projects with AI tools via the Model Context Protocol to enable natural language cont...

    Added May 30, 2025
  • sanderkooger-mcp-server-ragdocs
    sanderkooger-mcp-server-ragdocs

    Provides vector-based semantic search and real-time context augmentation for AI assistants by retrie...

    Added May 30, 2025
  • Ollama MCP Server
    Ollama MCP Server

    Enables seamless integration of local Ollama LLM models with MCP-compatible applications, offering m...

    Added May 30, 2025