Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • S3 MCP Server
  • Vertex AI MCP Server
  • TxtAi Memory Vector Server
  • MCP Model Context Protocol Server
  • OpenAPI MCP Server
Back to MCP Servers
MyAIServ MCP Server

MyAIServ MCP Server

Public
eagurin/myaiserv

A high-performance FastAPI server supporting Model Context Protocol (MCP) for seamless integration with Large Language Models, featuring REST, GraphQL, and WebSocket APIs, along with real-time monitoring and vector search capabilities.

Verified
python
0 tools
May 30, 2025
Updated May 30, 2025

MCP Server - Model Context Protocol API

MCP Server - это реализация Model Context Protocol (MCP) на базе FastAPI, предоставляющая стандартизированный интерфейс для взаимодействия между LLM-моделями и приложениями.

Особенности

  • 🚀 Высокопроизводительный API на базе FastAPI и асинхронных операций
  • 🔄 Полная поддержка MCP с ресурсами, инструментами, промптами и сэмплированием
  • 📊 Мониторинг и метрики через Prometheus и Grafana
  • 🧩 Расширяемость через простые интерфейсы для добавления новых инструментов
  • 📝 GraphQL API для гибкой работы с данными
  • 💬 WebSocket поддержка для реал-тайм взаимодействия
  • 🔍 Семантический поиск через интеграцию с Elasticsearch
  • 🗃️ Кэширование через Redis для улучшения производительности
  • 📦 Управление зависимостями через Poetry для надежного управления пакетами

Начало работы

Установка

  1. Клонировать репозиторий:

    git clone https://github.com/yourusername/myaiserv.git cd myaiserv
  2. Установить Poetry (если еще не установлен):

    curl -sSL https://install.python-poetry.org | python3 -
  3. Установить зависимости через Poetry:

    poetry install

Запуск сервера

poetry run uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload

Или через утилиту just:

just run

После запуска API доступен по адресу: http://localhost:8000

Документация API

  • Swagger UI: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc
  • GraphQL Playground: http://localhost:8000/graphql

Структура проекта

myaiserv/
├── app/
│   ├── core/             # Базовые компоненты MCP
│   │   ├── base_mcp.py   # Абстрактные классы MCP
│   │   └── base_sampling.py  # Базовые классы для сэмплирования
│   ├── models/           # Pydantic модели
│   │   ├── mcp.py        # Модели данных MCP
│   │   └── graphql.py    # GraphQL схема
│   ├── services/         # Бизнес-логика
│   │   └── mcp_service.py # Сервис MCP
│   ├── storage/          # Хранилище данных
│   ├── tools/            # Инструменты MCP
│   │   ├── example_tool.py   # Примеры инструментов
│   │   └── text_processor.py # Инструмент обработки текста
│   ├── utils/            # Утилиты
│   └── main.py           # Точка входа FastAPI
├── app/tests/            # Тесты
├── docs/                 # Документация
│   └── MCP_API.md        # Описание API
├── pyproject.toml        # Конфигурация Poetry и инструментов
└── .justfile             # Задачи для утилиты just

Доступные инструменты

File System Tool

Инструмент для работы с файловой системой, поддерживающий операции чтения, записи, удаления и листинга файлов.

curl -X POST "http://localhost:8000/tools/file_operations" \ -H "Content-Type: application/json" \ -d '{"operation": "list", "path": "."}'

Weather Tool

Инструмент для получения погодных данных по координатам.

curl -X POST "http://localhost:8000/tools/weather" \ -H "Content-Type: application/json" \ -d '{"latitude": 37.7749, "longitude": -122.4194}'

Text Analysis Tool

Инструмент для анализа текста, включая определение тональности и суммаризацию.

curl -X POST "http://localhost:8000/tools/text_analysis" \ -H "Content-Type: application/json" \ -d '{"text": "Example text for analysis", "analysis_type": "sentiment"}'

Text Processor Tool

Инструмент для обработки текста, включая форматирование, расчет статистики, извлечение сущностей.

curl -X POST "http://localhost:8000/tools/text_processor" \ -H "Content-Type: application/json" \ -d '{"operation": "statistics", "text": "Example text", "stat_options": ["chars", "words"]}'

Image Processing Tool

Инструмент для обработки изображений, поддерживающий изменение размера, обрезку и применение фильтров.

curl -X POST "http://localhost:8000/tools/image_processing" \ -H "Content-Type: application/json" \ -d '{"operation": "resize", "image_data": "base64...", "params": {"width": 800, "height": 600}}'

WebSocket API

Для подключения к WebSocket API:

const socket = new WebSocket("ws://localhost:8000/ws"); socket.onopen = () => { socket.send(JSON.stringify({ type: "initialize", id: "my-request-id" })); }; socket.onmessage = (event) => { const data = JSON.parse(event.data); console.log("Received:", data); };

GraphQL API

Примеры запросов через GraphQL:

# Получение списка всех инструментов query { getTools { name description } } # Выполнение инструмента mutation { executeTool(input: { name: "text_processor", parameters: { operation: "statistics", text: "Example text for analysis" } }) { content { type text } is_error } }

Запуск тестов

Для запуска тестов используйте Poetry:

poetry run pytest

Или через утилиту just:

just test

Docker

Сборка и запуск через Docker Compose

docker compose up -d

Для запуска отдельных сервисов:

docker compose up -d web redis elasticsearch

Интеграция с LLM

MCP Server предоставляет стандартизированный интерфейс для интеграции с LLM-моделями различных поставщиков:

import httpx async def query_mcp_with_llm(prompt: str): async with httpx.AsyncClient() as client: # Запрос к MCP для получения контекста и инструментов tools_response = await client.get("http://localhost:8000/tools") tools = tools_response.json()["tools"] # Отправка запроса к LLM с включением MCP контекста llm_response = await client.post( "https://api.example-llm.com/v1/chat", json={ "messages": [ {"role": "system", "content": "You have access to the following tools:"}, {"role": "user", "content": prompt} ], "tools": tools, "tool_choice": "auto" } ) return llm_response.json()

Метрики и мониторинг

MCP Server предоставляет метрики в формате Prometheus по эндпоинту /metrics. Метрики включают:

  • Количество запросов к каждому инструменту
  • Время выполнения запросов
  • Ошибки и исключения

Разработка

Для форматирования кода и проверки линтерами:

just fmt just lint

Лицензия

MIT License

Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • S3 MCP Server
    S3 MCP Server

    An Amazon S3 Model Context Protocol server that allows Large Language Models like Claude to interact...

    3 tools
    Added May 30, 2025
  • Vertex AI MCP Server
    Vertex AI MCP Server

    Implementation of Model Context Protocol (MCP) server that provides tools for accessing Google Cloud...

    20 tools
    Added May 30, 2025
  • TxtAi Memory Vector Server
    TxtAi Memory Vector Server

    Model Context Protocol (MCP) server implementation for semantic search and memory management using T...

    Added May 30, 2025
  • MCP Model Context Protocol Server
    MCP Model Context Protocol Server

    A server implementation demonstrating how AI models can interact with external tools and services th...

    Added May 30, 2025
  • OpenAPI MCP Server
    OpenAPI MCP Server

    A Model Context Protocol Server that enables LLMs to interact with and execute REST API calls throug...

    Added May 30, 2025