Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • Ragie Model Context Protocol Server
  • MCP Model Context Protocol Server
  • AWS Knowledge Base Retrieval MCP Server
  • YOKATLAS API MCP Server
  • mcp-server-asana
Back to MCP Servers
Model Context Protocol Server

Model Context Protocol Server

Public
arkeodev/search-engine-with-rag-and-mcp

Combines Model Context Protocol with Retrieval-Augmented Generation and web search APIs to deliver an agentic AI system for efficient information retrieval, local and cloud LLM support, and standardized tool invocation.

python
0 tools
May 29, 2025
Updated Jun 4, 2025

Supercharge Your AI with Model Context Protocol Server

MCP Server

Unlock the full potential of Model Context Protocol Server through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.

Unified API Access
Complete Tracing
Instant Setup
Get Started Now

Free tier available • No credit card required

Instant Setup
99.9% Uptime
10,000+Monthly Requests

Search Engine with RAG and MCP

A powerful search engine that combines LangChain, Model Context Protocol (MCP), Retrieval-Augmented Generation (RAG), and Ollama to create an agentic AI system capable of searching the web, retrieving information, and providing relevant answers.

Features

  • Web search capabilities using the Exa API
  • Web content retrieval using FireCrawl
  • RAG (Retrieval-Augmented Generation) for more relevant information extraction
  • MCP (Model Context Protocol) server for standardized tool invocation
  • Support for both local LLMs via Ollama and cloud-based LLMs via OpenAI
  • Flexible architecture supporting direct search, agent-based search, or server mode
  • Comprehensive error handling and graceful fallbacks
  • Python 3.13+ with type hints
  • Asynchronous processing for efficient web operations

Architecture

This project integrates several key components:

  1. Search Module: Uses Exa API to search the web and FireCrawl to retrieve content
  2. RAG Module: Embeds documents, chunks them, and stores them in a FAISS vector store
  3. MCP Server: Provides a standardized protocol for tool invocation
  4. Agent: LangChain-based agent that uses the search and RAG capabilities

Project Structure

search-engine-with-rag-and-mcp/
├── LICENSE              # MIT License
├── README.md            # Project documentation
├── data/                # Data directories
├── docs/                # Documentation
│   └── env_template.md  # Environment variables documentation
├── logs/                # Log files directory (auto-created)
├── src/                 # Main package (source code)
│   ├── __init__.py      
│   ├── core/            # Core functionality
│   │   ├── __init__.py
│   │   ├── main.py      # Main entry point
│   │   ├── search.py    # Web search module
│   │   ├── rag.py       # RAG implementation
│   │   ├── agent.py     # LangChain agent
│   │   └── mcp_server.py # MCP server implementation
│   └── utils/           # Utility modules
│       ├── __init__.py
│       ├── env.py       # Environment variable loading
│       └── logger.py    # Logging configuration
├── pyproject.toml       # Poetry configuration
├── requirements.txt     # Project dependencies
└── tests/               # Test directory

Getting Started

Prerequisites

  • Python 3.13+
  • Poetry (optional, for development)
  • API keys for Exa and FireCrawl
  • (Optional) Ollama installed locally
  • (Optional) OpenAI API key

Installation

  1. Clone the repository
git clone https://github.com/yourusername/search-engine-with-rag-and-mcp.git cd search-engine-with-rag-and-mcp
  1. Install dependencies
# Using pip pip install -r requirements.txt # Or using poetry poetry install
  1. Create a .env file (use docs/env_template.md as a reference)

Usage

The application has three main modes of operation:

1. Direct Search Mode (Default)

# Using pip python -m src.core.main "your search query" # Or using poetry poetry run python -m src.core.main "your search query"

2. Agent Mode

python -m src.core.main --agent "your search query"

3. MCP Server Mode

python -m src.core.main --server

You can also specify custom host and port:

python -m src.core.main --server --host 0.0.0.0 --port 8080

Using Ollama (Optional)

To use Ollama for local embeddings and LLM capabilities:

  1. Install Ollama: https://ollama.ai/
  2. Pull a model:
ollama pull mistral:latest
  1. Set the appropriate environment variables in your .env file:
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=mistral:latest

Development

This project follows these best practices:

  • Code formatting: Black and isort for consistent code style
  • Type checking: mypy for static type checking
  • Linting: flake8 for code quality
  • Testing: pytest for unit and integration tests
  • Environment Management: python-dotenv for managing environment variables
  • Logging: Structured logging to both console and file

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

  • LangChain for the agent framework
  • Model Context Protocol for the standardized tool invocation
  • Ollama for local LLM capabilities
  • Exa for web search capabilities
  • FireCrawl for web content retrieval
Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • Ragie Model Context Protocol Server
    Ragie Model Context Protocol Server

    Enables AI models to retrieve relevant information from a Ragie knowledge base using the Model Conte...

    1 tools
    Added May 30, 2025
  • MCP Model Context Protocol Server
    MCP Model Context Protocol Server

    Demonstrates Model Context Protocol (MCP) integration enabling AI models to execute tools, access re...

    Added May 30, 2025
  • AWS Knowledge Base Retrieval MCP Server
    AWS Knowledge Base Retrieval MCP Server

    Retrieval-Augmented Generation (RAG) server enabling efficient extraction of contextual information ...

    Added May 30, 2025
  • YOKATLAS API MCP Server
    YOKATLAS API MCP Server

    Provides standardized Model Context Protocol (MCP) access to YÖKATLAS data, enabling programmatic se...

    Added May 30, 2025
  • mcp-server-asana
    mcp-server-asana

    Enables seamless interaction with Asana API via Model Context Protocol, providing advanced task, pro...

    22 tools
    Added May 30, 2025