A modular system for building and orchestrating AI applications through microservices, featuring LLM interactions, Jupyter notebook execution, and visual workflow capabilities.
MCP is a modular framework for managing, executing, and monitoring AI model contexts, including LLM prompts, Jupyter notebooks, and Python scripts. It provides a FastAPI backend and a Streamlit dashboard frontend.
pip install -r requirements.txt
MCP_API_KEY
for API authentication (optional, defaults provided)ANTHROPIC_API_KEY
if using Claudeuvicorn mcp.api.main:app --reload
streamlit run mcp/ui/app.py
mcp/core/
mcp/ui/app.py
pytest
mcp/api/
- FastAPI backendmcp/ui/
- Streamlit frontendmcp/core/
- Core MCP types and logictests/
- Test suiteMIT
Once the server is running, you can access:
The server includes:
This project now requires the following additional Python packages:
Install all dependencies with:
pip install -r requirements.txt
The example notebook (mcp/notebooks/example.ipynb
) demonstrates:
anthropic
Python packageTo use the LLM cell, ensure you have set your ANTHROPIC_API_KEY
in your environment or .env
file.
The notebook cell for LLM looks like this:
import os import anthropic api_key = os.getenv('ANTHROPIC_API_KEY') if not api_key: raise ValueError('ANTHROPIC_API_KEY not set in environment!') client = anthropic.Anthropic(api_key=api_key) response = client.messages.create( model='claude-3-sonnet-20240229', max_tokens=256, temperature=0.7, messages=[ {'role': 'user', 'content': 'Tell me a joke about data science.'} ] ) print('Claude says:', response.content[0].text)
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!