A Model Context Protocol (MCP) server that enables Claude to use Monte Carlo Tree Search algorithms for deep, explorative analysis of topics, questions, or text inputs.
A Model Context Protocol (MCP) server that exposes an Advanced Bayesian Monte Carlo Tree Search (MCTS) engine for AI-assisted analysis and reasoning.
This MCP server enables Claude to use Monte Carlo Tree Search (MCTS) algorithms for deep, explorative analysis of topics, questions, or text inputs. The MCTS algorithm uses a Bayesian approach to systematically explore different angles and interpretations, producing insightful analyses that evolve through multiple iterations.
The server exposes the many tools to your LLM detailed below in a copy-pasteable format for your system prompt.
When you ask Claude to perform deep analysis on a topic or question, it will leverage these tools automatically to explore different angles using the MCTS algorithm and analysis tools.
The MCTS MCP server uses a local inference approach rather than trying to call the LLM directly. This is compatible with the MCP protocol, which is designed for tools to be called by an AI assistant (like Claude) rather than for the tools to call the AI model themselves.
When Claude asks the server to perform analysis, the server:
Clone the repository:
The setup uses UV (Astral UV), a faster alternative to pip that offers improved dependency resolution.
./setup.sh
This will:
Alternatively, you can manually set up:
# Install UV if not already installed curl -fsSL https://astral.sh/uv/install.sh | bash
# Create and activate a virtual environment uv venv .venv source .venv/bin/activate # Install dependencies uv pip install -r requirements.txt
To integrate with Claude Desktop:
claude_desktop_config.json
from this repository~/.claude/claude_desktop_config.json
)claude_desktop_config.json
Example configuration:
{ "mcpServers": { "MCTSServer": { "command": "uv", "args": [ "run", "--directory", "/home/ty/Repositories/ai_workspace/mcts-mcp-server/src/mcts_mcp_server", "server.py" ], "env": { "PYTHONPATH": "/home/ty/Repositories/ai_workspace/mcts-mcp-server" } } } }
Make sure to update the paths to match the location of the MCTS MCP server on your system.
MCTS server and usage instructions: MCTS server and usage instructions: list_ollama_models() # Check what models are available set_ollama_model("cogito:latest") # Set the model you want to use initialize_mcts(question="Your question here", chat_id="unique_id") # Initialize analysis run_mcts(iterations=1, simulations_per_iteration=5) # Run the analysis After run_mcts is called it can take wuite a long time ie minutes to hours - so you may discuss any ideas or questions or await user confirmation of the process finishing, - then proceed to synthesis and analysis tools on resumption of chat. ## MCTS-MCP Tools Overview ### Core MCTS Tools: - `initialize_mcts`: Start a new MCTS analysis with a specific question - `run_mcts`: Run the MCTS algorithm for a set number of iterations/simulations - `generate_synthesis`: Generate a final summary of the MCTS results - `get_config`: View current MCTS configuration parameters - `update_config`: Update MCTS configuration parameters - `get_mcts_status`: Check the current status of the MCTS system Default configuration prioritizes speed and exploration, but you can customize parameters like exploration_weight, beta_prior_alpha/beta, surprise_threshold. ## Configuration You can customize the MCTS parameters in the config dictionary or through Claude's `update_config` tool. Key parameters include: - `max_iterations`: Number of MCTS iterations to run - `simulations_per_iteration`: Number of simulations per iteration - `exploration_weight`: Controls exploration vs. exploitation balance (in UCT) - `early_stopping`: Whether to stop early if a high-quality solution is found - `use_bayesian_evaluation`: Whether to use Bayesian evaluation for node scores - `use_thompson_sampling`: Whether to use Thompson sampling for selection Articulating Specific Pathways: Delving into the best_path nodes (using mcts_instance.get_best_path_nodes() if you have the instance) and examining the sequence of thought and content at each step can provide a fascinating micro-narrative of how the core insight evolved. Visualizing the tree (even a simplified version based on export_tree_summary) could also be illuminating and I will try to set up this feature. Modifying Parameters: This is a great way to test the robustness of the finding or explore different "cognitive biases" of the system. Increasing Exploration Weight: Might lead to more diverse, less obviously connected ideas. Decreasing Exploration Weight: Might lead to deeper refinement of the initial dominant pathways. Changing Priors (if Bayesian): You could bias the system towards certain approaches (e.g., increase alpha for 'pragmatic') to see how it influences the outcome. More Iterations/Simulations: Would allow for potentially deeper convergence or exploration of more niche pathways. ### Ollama Integration Tools: - `list_ollama_models`: Show all available local Ollama models - `set_ollama_model`: Select which Ollama model to use for MCTS - `run_model_comparison`: Run the same MCTS process across multiple models ### Results Collection: - Automatically stores results in `/home/ty/Repositories/ai_workspace/mcts-mcp-server/results` - Organizes by model name and run ID - Stores metrics, progress info, and final outputs # MCTS Analysis Tools This extension adds powerful analysis tools to the MCTS-MCP Server, making it easy to extract insights and understand results from your MCTS runs. The MCTS Analysis Tools provide a suite of integrated functions to: 1. List and browse MCTS runs 2. Extract key concepts, arguments, and conclusions 3. Generate comprehensive reports 4. Compare results across different runs 5. Suggest improvements for better performance ## Available Run Analysis Tools ### Browsing and Basic Information - `list_mcts_runs(count=10, model=None)`: List recent MCTS runs with key metadata - `get_mcts_run_details(run_id)`: Get detailed information about a specific run - `get_mcts_solution(run_id)`: Get the best solution from a run ### Analysis and Insights - `analyze_mcts_run(run_id)`: Perform a comprehensive analysis of a run - `get_mcts_insights(run_id, max_insights=5)`: Extract key insights from a run - `extract_mcts_conclusions(run_id)`: Extract conclusions from a run - `suggest_mcts_improvements(run_id)`: Get suggestions for improvement ### Reporting and Comparison - `get_mcts_report(run_id, format='markdown')`: Generate a comprehensive report (formats: 'markdown', 'text', 'html') - `get_best_mcts_runs(count=5, min_score=7.0)`: Get the best runs based on score - `compare_mcts_runs(run_ids)`: Compare multiple runs to identify similarities and differences ## Usage Examples # To list your recent MCTS runs: list_mcts_runs() # To get details about a specific run: get_mcts_run_details('cogito:latest_1745979984') ### Extracting Insights # To get key insights from a run: get_mcts_insights(run_id='cogito:latest_1745979984') ### Generating Reports # To generate a comprehensive markdown report: get_mcts_report(run_id='cogito:latest_1745979984', format='markdown') ### Improving Results # To get suggestions for improving a run: suggest_mcts_improvements(run_id='cogito:latest_1745979984') ### Comparing Runs To compare multiple runs: compare_mcts_runs(['cogito:latest_1745979984', 'qwen3:0.6b_1745979584']) ## Understanding the Results The analysis tools extract several key elements from MCTS runs: 1. **Key Concepts**: The core ideas and frameworks in the analysis 2. **Arguments For/Against**: The primary arguments on both sides of a question 3. **Conclusions**: The synthesized conclusions or insights from the analysis 4. **Tags**: Automatically generated topic tags from the content ## Troubleshooting If you encounter any issues with the analysis tools: 1. Check that your MCTS run completed successfully (status: "completed") 2. Verify that the run ID you're using exists and is correct 3. Try listing all runs to see what's available: `list_mcts_runs()` 4. Make sure the `.best_solution.txt` file exists in the run's directory ## Advanced Example Usage ### Customizing Reports You can generate reports in different formats: # Generate a markdown report report = get_mcts_report(run_id='cogito:latest_1745979984', format='markdown') # Generate a text report report = get_mcts_report(run_id='cogito:latest_1745979984', format='text') # Generate an HTML report report = get_mcts_report(run_id='cogito:latest_1745979984', format='html') ### Finding the Best Runs To find your best-performing runs: best_runs = get_best_mcts_runs(count=3, min_score=8.0) This returns the top 3 runs with a score of at least 8.0. ## Simple Usage Instructions 1. **Changing Models**: list_ollama_models() # See available models set_ollama_model("qwen3:0.6b") # Set to fast small model 2. **Starting a New Analysis**: initialize_mcts(question="Your question here", chat_id="unique_identifier") 3. **Running the Analysis**: run_mcts(iterations=3, simulations_per_iteration=10) 4. **Comparing Performance**: run_model_comparison(question="Your question", iterations=2) 5. **Getting Results**: generate_synthesis() # Final summary of results get_mcts_status() # Current status and metrics
# Activate virtual environment source .venv/bin/activate # Run the server directly (for testing) uv run server.py # OR use the MCP CLI tools uv run -m mcp dev server.py
To test that the server is working correctly:
# Activate the virtual environment source .venv/bin/activate # Run the test script python test_server.py
This will test the LLM adapter to ensure it's working properly.
Contributions to improve the MCTS MCP server are welcome. Some areas for potential enhancement:
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!