This advanced memory server facilitates neural memory-based sequence learning and prediction, enhancing code generation and understanding through state maintenance and manifold optimization as inspired by Google Research's framework.
A neural memory system for LLMs that can learn and predict sequences while maintaining state through a memory vector. This MCP (Model Context Protocol) server provides tools for Claude 3.7 Sonnet and other LLMs to maintain memory state across interactions.
# Clone the repository git clone https://github.com/yourusername/titan-memory.git cd titan-memory # Install dependencies npm install # Build the project npm run build # Start the server npm start
The Titan Memory MCP server provides the following tools:
help
Get help about available tools.
Parameters:
tool
(optional): Specific tool name to get help forcategory
(optional): Category of tools to exploreshowExamples
(optional): Include usage examplesverbose
(optional): Include detailed descriptionsinit_model
Initialize the Titan Memory model with custom configuration.
Parameters:
inputDim
: Input dimension size (default: 768)hiddenDim
: Hidden dimension size (default: 512)memoryDim
: Memory dimension size (default: 1024)transformerLayers
: Number of transformer layers (default: 6)numHeads
: Number of attention heads (default: 8)ffDimension
: Feed-forward dimension (default: 2048)dropoutRate
: Dropout rate (default: 0.1)maxSequenceLength
: Maximum sequence length (default: 512)memorySlots
: Number of memory slots (default: 5000)similarityThreshold
: Similarity threshold (default: 0.65)surpriseDecay
: Surprise decay rate (default: 0.9)pruningInterval
: Pruning interval (default: 1000)gradientClip
: Gradient clipping value (default: 1.0)forward_pass
Perform a forward pass through the model to get predictions.
Parameters:
x
: Input vector or textmemoryState
(optional): Memory state to usetrain_step
Execute a training step to update the model.
Parameters:
x_t
: Current input vector or textx_next
: Next input vector or textget_memory_state
Get the current memory state and statistics.
Parameters:
type
(optional): Optional memory type filtermanifold_step
Update memory along a manifold direction.
Parameters:
base
: Base memory statevelocity
: Update directionprune_memory
Remove less relevant memories to free up space.
Parameters:
threshold
: Pruning threshold (0-1)save_checkpoint
Save memory state to a file.
Parameters:
path
: Checkpoint file pathload_checkpoint
Load memory state from a file.
Parameters:
path
: Checkpoint file pathreset_gradients
Reset accumulated gradients to recover from training issues.
Parameters: None
The Titan Memory MCP server is designed to work seamlessly with Claude 3.7 Sonnet in Cursor. Here's an example of how to use it:
// Initialize the model const result = await callTool("init_model", { inputDim: 768, memorySlots: 10000, transformerLayers: 8, }); // Perform a forward pass const { predicted, memoryUpdate } = await callTool("forward_pass", { x: "const x = 5;", // or vector: [0.1, 0.2, ...] memoryState: currentMemory, }); // Train the model const result = await callTool("train_step", { x_t: "function hello() {", x_next: " console.log('world');", }); // Get memory state const state = await callTool("get_memory_state", {});
The Titan Memory MCP server includes sophisticated memory management to prevent memory leaks and ensure efficient tensor operations:
The Titan Memory MCP server is built with a modular architecture:
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!