Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • Xano MCP Server for Smithery
  • Image Processor MCP Server
  • MCP Server
  • mcp-server-data-exploration
  • Xano MCP Server
Back to MCP Servers
mcp-server-llmling

mcp-server-llmling

Public
phil65/mcp-server-llmling

Provides a YAML-configurable Model Context Protocol server enabling seamless management of LLM resources, prompts, and Python-based tools with support for multiple transport methods including SSE and CLI integration.

python
0 tools
May 30, 2025
Updated Jun 4, 2025

Supercharge Your AI with mcp-server-llmling

MCP Server

Unlock the full potential of mcp-server-llmling through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.

Unified API Access
Complete Tracing
Instant Setup
Get Started Now

Free tier available • No credit card required

Instant Setup
99.9% Uptime
10,000+Monthly Requests

mcp-server-llmling

Read the documentation!

LLMling Server Manual

Overview

mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.

LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.

  • Static Declaration: Define your LLM's environment in YAML - no code required
  • MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
  • Component Types:
    • Resources: Content providers (files, text, CLI output, etc.)
    • Prompts: Message templates with arguments
    • Tools: Python functions callable by the LLM

The YAML configuration creates a complete environment that provides the LLM with:

  • Access to content via resources
  • Structured prompts for consistent interaction
  • Tools for extending capabilities

Key Features

1. Resource Management

  • Load and manage different types of resources:
    • Text files (PathResource)
    • Raw text content (TextResource)
    • CLI command output (CLIResource)
    • Python source code (SourceResource)
    • Python callable results (CallableResource)
    • Images (ImageResource)
  • Support for resource watching/hot-reload
  • Resource processing pipelines
  • URI-based resource access

2. Tool System

  • Register and execute Python functions as LLM tools
  • Support for OpenAPI-based tools
  • Entry point-based tool discovery
  • Tool validation and parameter checking
  • Structured tool responses

3. Prompt Management

  • Static prompts with template support
  • Dynamic prompts from Python functions
  • File-based prompts
  • Prompt argument validation
  • Completion suggestions for prompt arguments

4. Multiple Transport Options

  • Stdio-based communication (default)
  • Server-Sent Events (SSE) / Streamable HTTP for web clients
  • Support for custom transport implementations

Usage

With Zed Editor

Add LLMLing as a context server in your settings.json:

{ "context_servers": { "llmling": { "command": { "env": {}, "label": "llmling", "path": "uvx", "args": [ "mcp-server-llmling", "start", "path/to/your/config.yml" ] }, "settings": {} } } }

With Claude Desktop

Configure LLMLing in your claude_desktop_config.json:

{ "mcpServers": { "llmling": { "command": "uvx", "args": [ "mcp-server-llmling", "start", "path/to/your/config.yml" ], "env": {} } } }

Manual Server Start

Start the server directly from command line:

# Latest version uvx mcp-server-llmling@latest

1. Programmatic usage

from llmling import RuntimeConfig from mcp_server_llmling import LLMLingServer async def main() -> None: async with RuntimeConfig.open(config) as runtime: server = LLMLingServer(runtime, enable_injection=True) await server.start() asyncio.run(main())

2. Using Custom Transport

from llmling import RuntimeConfig from mcp_server_llmling import LLMLingServer async def main() -> None: async with RuntimeConfig.open(config) as runtime: server = LLMLingServer( config, transport="sse", transport_options={ "host": "localhost", "port": 3001, "cors_origins": ["http://localhost:3000"] } ) await server.start() asyncio.run(main())

3. Resource Configuration

resources: python_code: type: path path: "./src/**/*.py" watch: enabled: true patterns: - "*.py" - "!**/__pycache__/**" api_docs: type: text content: | API Documentation ================ ...

4. Tool Configuration

tools: analyze_code: import_path: "mymodule.tools.analyze_code" description: "Analyze Python code structure" toolsets: api: type: openapi spec: "https://api.example.com/openapi.json"

[!TIP] For OpenAPI schemas, you can install Redocly CLI to bundle and resolve OpenAPI specifications before using them with LLMLing. This helps ensure your schema references are properly resolved and the specification is correctly formatted. If redocly is installed, it will be used automatically.

Server Configuration

The server is configured through a YAML file with the following sections:

global_settings: timeout: 30 max_retries: 3 log_level: "INFO" requirements: [] pip_index_url: null extra_paths: [] resources: # Resource definitions... tools: # Tool definitions... toolsets: # Toolset definitions... prompts: # Prompt definitions...

MCP Protocol

The server implements the MCP protocol which supports:

  1. Resource Operations

    • List available resources
    • Read resource content
    • Watch for resource changes
  2. Tool Operations

    • List available tools
    • Execute tools with parameters
    • Get tool schemas
  3. Prompt Operations

    • List available prompts
    • Get formatted prompts
    • Get completions for prompt arguments
  4. Notifications

    • Resource changes
    • Tool/prompt list updates
    • Progress updates
    • Log messages
Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • Xano MCP Server for Smithery
    Xano MCP Server for Smithery

    Model Context Protocol server enabling seamless integration between Claude AI and Xano databases wit...

    Added May 30, 2025
  • Image Processor MCP Server
    Image Processor MCP Server

    A TypeScript-based Model Context Protocol server enabling creation, access, and summarization of tex...

    2 tools
    Added May 30, 2025
  • MCP Server
    MCP Server

    Provides greeting-related tools, resources, and prompts via Model Context Protocol (MCP), enabling p...

    Added May 30, 2025
  • mcp-server-data-exploration
    mcp-server-data-exploration

    Interactive Model Context Protocol server enabling seamless data exploration by loading CSV datasets...

    2 tools
    Added May 30, 2025
  • Xano MCP Server
    Xano MCP Server

    Python-based Model Context Protocol server enabling AI assistants to securely interact with Xano ins...

    Added May 30, 2025