Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • Powertools MCP Search Server
  • MkDocs MCP Search Server
  • Vertex AI MCP Server
  • TripAdvisor Vacation Planner MCP Server
  • Gemini MCP Image Generation Server
Back to MCP Servers
MCP Search Server

MCP Search Server

Public
Nghiauet/mcp-agent

Provides web search functionality for the Gemini Terminal Agent, handling concurrent requests and content extraction to deliver real-time information from the web.

Verified
python
0 tools
May 30, 2025
Updated May 30, 2025

Gemini Terminal Agent

A powerful terminal-based agent using Google's Gemini model with web search capabilities. This agent lets you interact with Gemini through your terminal while leveraging real-time web search for up-to-date information.

Features

  • šŸ¤– Conversational AI Interface - Talk with Google's Gemini models directly from your terminal
  • šŸ” Web Search Integration - Get real-time information from the web
  • šŸ’¬ Conversation History - Maintain context throughout your conversation
  • šŸ› ļø Advanced Search Options - Filter by domains, exclude sites, and more
  • šŸ“ Clean, Modular Architecture - Well-structured codebase that's easy to extend

Installation

Prerequisites

  • Python 3.9+
  • Google API key for Gemini models
  • Google Custom Search Engine (CSE) API key and ID

Setup

  1. Clone the repository:

    git clone https://github.com/yourusername/gemini-terminal-agent.git cd gemini-terminal-agent
  2. Create a virtual environment (recommended):

    python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
  3. Install dependencies:

    pip install -r requirements.txt
  4. Create a .env file in the project root with your API keys:

    GOOGLE_GENAI_API_KEY=your_gemini_api_key_here
    SEARCH_ENGINE_API_KEY=your_google_api_key_here
    SEARCH_ENGINE_CSE_ID=your_cse_id_here
    DEFAULT_MODEL=gemini-2.5-flash-preview-04-17
    

Setting Up Google Search Engine

To use the web search functionality, you need to set up a Google Custom Search Engine:

  1. Get a Google API Key:

    • Go to Google Cloud Console
    • Create a new project or select an existing one
    • Navigate to "APIs & Services" > "Library"
    • Search for "Custom Search API" and enable it
    • Go to "APIs & Services" > "Credentials"
    • Create an API key and copy it (this will be your SEARCH_ENGINE_API_KEY)
  2. Create a Custom Search Engine:

    • Go to Programmable Search Engine
    • Click "Create a Programmable Search Engine"
    • Add sites to search (use *.com to search the entire web)
    • Give your search engine a name
    • In "Customize" > "Basics", enable "Search the entire web"
    • Get your Search Engine ID from the "Setup" > "Basics" page (this will be your SEARCH_ENGINE_CSE_ID)
  3. Get a Gemini API Key:

    • Go to Google AI Studio
    • Sign in with your Google account
    • Go to "API Keys" and create a new API key
    • Copy the API key (this will be your GOOGLE_GENAI_API_KEY)

Usage

Run the agent from the terminal:

python main.py

Commands

  • Type your question or prompt to interact with the agent
  • Type help to see available tools and commands
  • Type clear to clear the conversation history
  • Type exit, quit, or q to exit the program

Example Queries

>>> What is the capital of France?
Paris is the capital of France. It is located in the north-central part of the country on the Seine River.

>>> search for recent developments in quantum computing
Searching the web for recent developments in quantum computing...
[Agent response with up-to-date information]

>>> help
šŸ” Available Tools:
  - search: Search for information online based on a query
  - advanced_search: Perform an advanced search with domain filtering and time range options

āŒØļø Terminal Commands:
  - help: Show this help message
  - clear: Clear conversation history
  - exit/quit/q: Exit the program

Project Structure

gemini-terminal-agent/
│
ā”œā”€ā”€ main.py               # Main entry point
ā”œā”€ā”€ search_server.py      # Search server entry point
ā”œā”€ā”€ .env                  # Environment variables (not versioned)
│
ā”œā”€ā”€ agent/                # Agent implementation
│   ā”œā”€ā”€ __init__.py
│   ā”œā”€ā”€ terminal_agent.py # Core agent implementation
│   └── config.py         # Agent configuration
│
ā”œā”€ā”€ search/               # Search functionality
│   ā”œā”€ā”€ __init__.py
│   ā”œā”€ā”€ server.py         # MCP search server
│   ā”œā”€ā”€ engine.py         # Search engine implementation
│   └── content.py        # Web content extraction 
│
└── utils/                # Shared utilities
    ā”œā”€ā”€ __init__.py
    ā”œā”€ā”€ config.py         # Global configuration
    └── logging.py        # Logging setup

Advanced Configuration

You can customize the agent's behavior by modifying settings in your .env file:

# Model settings
DEFAULT_MODEL=gemini-2.5-flash-preview-04-17
# Other models: gemini-1.5-pro, gemini-1.5-flash

# Search settings
MAX_CONCURRENT_REQUESTS=5
CONNECTION_TIMEOUT=10
CONTENT_TIMEOUT=15
MAX_CONTENT_LENGTH=5000
CACHE_TTL=3600

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • This project uses LangChain for the agent framework
  • Web search functionality powered by Google Custom Search Engine
  • Built with Google's Gemini models
Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • Powertools MCP Search Server
    Powertools MCP Search Server

    Enables LLMs to search through AWS Lambda Powertools documentation across multiple runtimes (Python,...

    2 tools
    Added May 30, 2025
  • MkDocs MCP Search Server
    MkDocs MCP Search Server

    Enables Claude and other LLMs to search through any published MkDocs documentation site using the Lu...

    Added May 30, 2025
  • Vertex AI MCP Server
    Vertex AI MCP Server

    Implementation of Model Context Protocol (MCP) server that provides tools for accessing Google Cloud...

    20 tools
    Added May 30, 2025
  • TripAdvisor Vacation Planner MCP Server
    TripAdvisor Vacation Planner MCP Server

    This MCP server provides access to TripAdvisor data for planning vacations, enabling users to search...

    Added May 30, 2025
  • Gemini MCP Image Generation Server
    Gemini MCP Image Generation Server

    A Model Context Protocol server that provides image generation capabilities using Google's Gemini 2 ...

    1 tools
    Added May 30, 2025