MCP-Ragdocs

MCP-Ragdocs

Public
qpd-v/mcp-ragdocs

Enables semantic search and natural language retrieval of documentation by indexing content from URLs or local files into a vector database using Model Context Protocol integration.

javascript
0 tools
May 30, 2025
Updated Jun 4, 2025

Supercharge Your AI with MCP-Ragdocs

MCP Server

Unlock the full potential of MCP-Ragdocs through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.

Unified API Access
Complete Tracing
Instant Setup
Get Started Now

Free tier available • No credit card required

Instant Setup
99.9% Uptime
10,000+Monthly Requests
Configuration Requirements
API Key
Configure authentication and required variables to access this MCP server
Required Environment Variables
EMBEDDING_PROVIDER
Optional
string

Choose between 'ollama' (default) or 'openai' for the embedding provider.

Default: ollama
OPENAI_API_KEY
Optional
string

Your OpenAI API key, required if using OpenAI as the embedding provider.

EMBEDDING_MODEL
Optional
string

Optional embedding model. Defaults to 'nomic-embed-text' for Ollama and 'text-embedding-3-small' for OpenAI.

QDRANT_URL
Optional
string

URL of your Qdrant instance. For local use: http://localhost:6333. For Qdrant Cloud: https://your-cluster-url.qdrant.tech

QDRANT_API_KEY
Optional
string

Your Qdrant Cloud API key, required if using Qdrant Cloud.

OLLAMA_URL
Optional
string

URL of your Ollama instance, defaults to http://localhost:11434.

Default: http://localhost:11434

Security Notice

Your environment variables and credentials are securely stored and encrypted. LangDB never shares these configuration values with third parties.

Related MCPs5
  • sanderkooger-mcp-server-ragdocs

    Provides vector-based semantic search and real-time context augmentation for AI assistants by retrieving and processing documentation from multiple sources using Model Context Protocol.

    Added May 30, 2025
  • MCP Web Research Server

    Advanced Model Context Protocol server enabling deep web research with intelligent search queuing, enhanced content extraction, real-time webpage analysis, and seamless integration for comprehensive, efficient information retrieval.

    3 tools
    Added May 30, 2025
  • RagDocs MCP Server

    Model Context Protocol server offering retrieval-augmented generation with semantic document search, management, and vector similarity using Qdrant and Ollama or OpenAI embeddings.

    Added May 30, 2025
  • MkDocs MCP Search Server

    Enables Model Context Protocol integration for efficient, version-specific search of MkDocs-powered documentation sites using lunr.js, enhancing Large Language Model access to relevant content.

    Added May 30, 2025
  • MCP Qdrant Server with OpenAI Embeddings

    Provides semantic vector search and collection management using Qdrant database integrated with OpenAI embeddings for enhanced natural language query capabilities within the Model Context Protocol framework.

    Added May 29, 2025