A Python implementation of the Model Context Protocol that allows applications to provide standardized context for LLMs, enabling creation of servers that expose data and functionality to LLM applications through resources, tools, and prompts.
Python implementation of the Model Context Protocol (MCP)
The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:
We recommend using uv to manage your Python projects.
If you haven't created a uv-managed project yet, create one:
uv init mcp-server-demo cd mcp-server-demo
Then add MCP to your project dependencies:
uv add "mcp[cli]"
Alternatively, for projects using pip for dependencies:
pip install "mcp[cli]"
To run the mcp command with uv:
uv run mcp
Let's create a simple MCP server that exposes a calculator tool and some data:
# server.py from mcp.server.fastmcp import FastMCP # Create an MCP server mcp = FastMCP("Demo") # Add an addition tool @mcp.tool() def add(a: int, b: int) -> int: """Add two numbers""" return a + b # Add a dynamic greeting resource @mcp.resource("greeting://{name}") def get_greeting(name: str) -> str: """Get a personalized greeting""" return f"Hello, {name}!"
You can install this server in Claude Desktop and interact with it right away by running:
mcp install server.py
Alternatively, you can test it with the MCP Inspector:
mcp dev server.py
The Model Context Protocol (MCP) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:
The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:
# Add lifespan support for startup/shutdown with strong typing from contextlib import asynccontextmanager from collections.abc import AsyncIterator from dataclasses import dataclass from fake_database import Database # Replace with your actual DB type from mcp.server.fastmcp import Context, FastMCP # Create a named server mcp = FastMCP("My App") # Specify dependencies for deployment and development mcp = FastMCP("My App", dependencies=["pandas", "numpy"]) @dataclass class AppContext: db: Database @asynccontextmanager async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]: """Manage application lifecycle with type-safe context""" # Initialize on startup db = await Database.connect() try: yield AppContext(db=db) finally: # Cleanup on shutdown await db.disconnect() # Pass lifespan to server mcp = FastMCP("My App", lifespan=app_lifespan) # Access type-safe lifespan context in tools @mcp.tool() def query_db(ctx: Context) -> str: """Tool that uses initialized resources""" db = ctx.request_context.lifespan_context["db"] return db.query()
Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects:
from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") @mcp.resource("config://app") def get_config() -> str: """Static configuration data""" return "App configuration here" @mcp.resource("users://{user_id}/profile") def get_user_profile(user_id: str) -> str: """Dynamic user data""" return f"Profile data for user {user_id}"
Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:
import httpx from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") @mcp.tool() def calculate_bmi(weight_kg: float, height_m: float) -> float: """Calculate BMI given weight in kg and height in meters""" return weight_kg / (height_m**2) @mcp.tool() async def fetch_weather(city: str) -> str: """Fetch current weather for a city""" async with httpx.AsyncClient() as client: response = await client.get(f"https://api.weather.com/{city}") return response.text
Prompts are reusable templates that help LLMs interact with your server effectively:
from mcp.server.fastmcp import FastMCP from mcp.server.fastmcp.prompts import base mcp = FastMCP("My App") @mcp.prompt() def review_code(code: str) -> str: return f"Please review this code: {code}" @mcp.prompt() def debug_error(error: str) -> list[base.Message]: return [ base.UserMessage("I'm seeing this error:"), base.UserMessage(error), base.AssistantMessage("I'll help debug that. What have you tried so far?"), ]
FastMCP provides an Image
class that automatically handles image data:
from mcp.server.fastmcp import FastMCP, Image from PIL import Image as PILImage mcp = FastMCP("My App") @mcp.tool() def create_thumbnail(image_path: str) -> Image: """Create a thumbnail from an image""" img = PILImage.open(image_path) img.thumbnail((100, 100)) return Image(data=img.tobytes(), format="png")
The Context object gives your tools and resources access to MCP capabilities:
from mcp.server.fastmcp import FastMCP, Context mcp = FastMCP("My App") @mcp.tool() async def long_task(files: list[str], ctx: Context) -> str: """Process multiple files with progress tracking""" for i, file in enumerate(files): ctx.info(f"Processing {file}") await ctx.report_progress(i, len(files)) data, mime_type = await ctx.read_resource(f"file://{file}") return "Processing complete"
The fastest way to test and debug your server is with the MCP Inspector:
mcp dev server.py # Add dependencies mcp dev server.py --with pandas --with numpy # Mount local code mcp dev server.py --with-editable .
Once your server is ready, install it in Claude Desktop:
mcp install server.py # Custom name mcp install server.py --name "My Analytics Server" # Environment variables mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://... mcp install server.py -f .env
For advanced scenarios like custom deployments:
from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") if __name__ == "__main__": mcp.run()
Run it with:
python server.py # or mcp run server.py
You can mount the SSE server to an existing ASGI server using the sse_app
method. This allows you to integrate the SSE server with other ASGI applications.
from starlette.applications import Starlette from starlette.routing import Mount, Host from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") # Mount the SSE server to the existing ASGI server app = Starlette( routes=[ Mount('/', app=mcp.sse_app()), ] ) # or dynamically mount as host app.router.routes.append(Host('mcp.acme.corp', app=mcp.sse_app()))
For more information on mounting applications in Starlette, see the Starlette documentation.
A simple server demonstrating resources, tools, and prompts:
from mcp.server.fastmcp import FastMCP mcp = FastMCP("Echo") @mcp.resource("echo://{message}") def echo_resource(message: str) -> str: """Echo a message as a resource""" return f"Resource echo: {message}" @mcp.tool() def echo_tool(message: str) -> str: """Echo a message as a tool""" return f"Tool echo: {message}" @mcp.prompt() def echo_prompt(message: str) -> str: """Create an echo prompt""" return f"Please process this message: {message}"
A more complex example showing database integration:
import sqlite3 from mcp.server.fastmcp import FastMCP mcp = FastMCP("SQLite Explorer") @mcp.resource("schema://main") def get_schema() -> str: """Provide the database schema as a resource""" conn = sqlite3.connect("database.db") schema = conn.execute("SELECT sql FROM sqlite_master WHERE type='table'").fetchall() return " ".join(sql[0] for sql in schema if sql[0]) @mcp.tool() def query_data(sql: str) -> str: """Execute SQL queries safely""" conn = sqlite3.connect("database.db") try: result = conn.execute(sql).fetchall() return " ".join(str(row) for row in result) except Exception as e: return f"Error: {str(e)}"
For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server, including lifecycle management through the lifespan API:
from contextlib import asynccontextmanager from collections.abc import AsyncIterator from fake_database import Database # Replace with your actual DB type from mcp.server import Server @asynccontextmanager async def server_lifespan(server: Server) -> AsyncIterator[dict]: """Manage server startup and shutdown lifecycle.""" # Initialize resources on startup db = await Database.connect() try: yield {"db": db} finally: # Clean up on shutdown await db.disconnect() # Pass lifespan to server server = Server("example-server", lifespan=server_lifespan) # Access lifespan context in handlers @server.call_tool() async def query_db(name: str, arguments: dict) -> list: ctx = server.request_context db = ctx.lifespan_context["db"] return await db.query(arguments["query"])
The lifespan API provides:
import mcp.server.stdio import mcp.types as types from mcp.server.lowlevel import NotificationOptions, Server from mcp.server.models import InitializationOptions # Create a server instance server = Server("example-server") @server.list_prompts() async def handle_list_prompts() -> list[types.Prompt]: return [ types.Prompt( name="example-prompt", description="An example prompt template", arguments=[ types.PromptArgument( name="arg1", description="Example argument", required=True ) ], ) ] @server.get_prompt() async def handle_get_prompt( name: str, arguments: dict[str, str] | None ) -> types.GetPromptResult: if name != "example-prompt": raise ValueError(f"Unknown prompt: {name}") return types.GetPromptResult( description="Example prompt", messages=[ types.PromptMessage( role="user", content=types.TextContent(type="text", text="Example prompt text"), ) ], ) async def run(): async with mcp.server.stdio.stdio_server() as (read_stream, write_stream): await server.run( read_stream, write_stream, InitializationOptions( server_name="example", server_version="0.1.0", capabilities=server.get_capabilities( notification_options=NotificationOptions(), experimental_capabilities={}, ), ), ) if __name__ == "__main__": import asyncio asyncio.run(run())
The SDK provides a high-level client interface for connecting to MCP servers:
from mcp import ClientSession, StdioServerParameters, types from mcp.client.stdio import stdio_client # Create server parameters for stdio connection server_params = StdioServerParameters( command="python", # Executable args=["example_server.py"], # Optional command line arguments env=None, # Optional environment variables ) # Optional: create a sampling callback async def handle_sampling_message( message: types.CreateMessageRequestParams, ) -> types.CreateMessageResult: return types.CreateMessageResult( role="assistant", content=types.TextContent( type="text", text="Hello, world! from model", ), model="gpt-3.5-turbo", stopReason="endTurn", ) async def run(): async with stdio_client(server_params) as (read, write): async with ClientSession( read, write, sampling_callback=handle_sampling_message ) as session: # Initialize the connection await session.initialize() # List available prompts prompts = await session.list_prompts() # Get a prompt prompt = await session.get_prompt( "example-prompt", arguments={"arg1": "value"} ) # List available resources resources = await session.list_resources() # List available tools tools = await session.list_tools() # Read a resource content, mime_type = await session.read_resource("file://some/path") # Call a tool result = await session.call_tool("tool-name", arguments={"arg1": "value"}) if __name__ == "__main__": import asyncio asyncio.run(run())
The MCP protocol defines three core primitives that servers can implement:
Primitive | Control | Description | Example Use |
---|---|---|---|
Prompts | User-controlled | Interactive templates invoked by user choice | Slash commands, menu options |
Resources | Application-controlled | Contextual data managed by the client application | File contents, API responses |
Tools | Model-controlled | Functions exposed to the LLM to take actions | API calls, data updates |
MCP servers declare capabilities during initialization:
Capability | Feature Flag | Description |
---|---|---|
prompts | listChanged | Prompt template management |
resources | subscribe``listChanged | Resource exposure and updates |
tools | listChanged | Tool discovery and execution |
logging | - | Server logging configuration |
completion | - | Argument completion suggestions |
We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the contributing guide to get started.
This project is licensed under the MIT License - see the LICENSE file for details.
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!