A server that provides document processing capabilities using the Model Context Protocol, allowing conversion of documents to markdown, extraction of tables, and processing of document images.
An MCP server that provides document processing capabilities using the Docling library.
You can install the package using pip:
pip install -e .
Start the server using either stdio (default) or SSE transport:
# Using stdio transport (default) mcp-server-lls # Using SSE transport on custom port mcp-server-lls --transport sse --port 8000
If you're using uv, you can run the server directly without installing:
# Using stdio transport (default) uv run mcp-server-lls # Using SSE transport on custom port uv run mcp-server-lls --transport sse --port 8000
The server exposes the following tools:
convert_document: Convert a document from a URL or local path to markdown format
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR, e.g. ["en", "fr"] (optional)convert_document_with_images: Convert a document and extract embedded images
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)extract_tables: Extract tables from a document as structured data
source
: URL or local file path to the document (required)convert_batch: Process multiple documents in batch mode
sources
: List of URLs or file paths to documents (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)qna_from_document: Create a Q&A document from a URL or local path to YAML format
source
: URL or local file path to the document (required)no_of_qnas
: Number of expected Q&As (optional, default: 5)WATSONX_PROJECT_ID
: Your Watson X project IDWATSONX_APIKEY
: Your IBM Cloud API keyWATSONX_URL
: The Watson X API URL (default: https://us-south.ml.cloud.ibm.com)get_system_info: Get information about system configuration and acceleration status
https://github.com/user-attachments/assets/8ad34e50-cbf7-4ec8-aedd-71c42a5de0a1
You can use this server with Llama Stack to provide document processing capabilities to your LLM applications. Make sure you have a running Llama Stack server, then configure your INFERENCE_MODEL
from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types.agent_create_params import AgentConfig from llama_stack_client.types.shared_params.url import URL from llama_stack_client import LlamaStackClient import os # Set your model ID model_id = os.environ["INFERENCE_MODEL"] client = LlamaStackClient( base_url=f"http://localhost:{os.environ.get('LLAMA_STACK_PORT', '8080')}" ) # Register MCP tools client.toolgroups.register( toolgroup_id="mcp::docling", provider_id="model-context-protocol", mcp_endpoint=URL(uri="http://0.0.0.0:8000/sse")) # Define an agent with MCP toolgroup agent_config = AgentConfig( model=model_id, instructions="""You are a helpful assistant with access to tools to manipulate documents. Always use the appropriate tool when asked to process documents.""", toolgroups=["mcp::docling"], tool_choice="auto", max_tool_calls=3, ) # Create the agent agent = Agent(client, agent_config) # Create a session session_id = agent.create_session("test-session") def _summary_and_qna(source: str): # Define the prompt run_turn(f"Please convert the document at {source} to markdown and summarize its content.") run_turn(f"Please generate a Q&A document with 3 items for source at {source} and display it in YAML format.") def _run_turn(prompt): # Create a turn response = agent.create_turn( messages=[ { "role": "user", "content": prompt, } ], session_id=session_id, ) # Log the response for log in EventLogger().log(response): log.print() _summary_and_qna('https://arxiv.org/pdf/2004.07606')
The server caches processed documents in ~/.cache/mcp-docling/
to improve performance for repeated requests.
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!