A TypeScript implementation of the MCP Agent framework, providing tools for building context-aware agents with advanced workflow management, logging, and execution capabilities.
The MCP (Model Context Protocol) Agent TypeScript Port is a robust type-safe implementation of the MCP Agent system. It provides a flexible framework for building intelligent context-aware agents with advanced workflow management, logging, and execution capabilities.
This is a TypeScript port of the original MCP Agent framework by lastmile-ai.
š Modular Architecture
š Advanced Workflow Management
š Powerful Logging System
š§° Flexible Executor
š„ļø CLI Support
To install MCP Agent TypeScript Port for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @waldzellai/mcp-agent-ts --client claude
npm install @waldzell/mcp-agent-ts
import { BaseWorkflow } from '@waldzell/mcp-agent-ts'; class MyDataProcessingWorkflow extends BaseWorkflow { constructor() { super('my-workflow', 'Data Processing'); this.addStep({ id: 'extract', name: 'Data Extraction', execute: async (context) => { // Implement data extraction logic return { data: ['item1', 'item2'] }; } }); this.addStep({ id: 'transform', name: 'Data Transformation', execute: async (context) => { // Implement data transformation logic return { transformedData: ['ITEM1', 'ITEM2'] }; } }); } } async function runWorkflow() { const workflow = new MyDataProcessingWorkflow(); const results = await workflow.execute(); console.log(results); }
import { debug, info, warn, error } from '@waldzell/mcp-agent-ts'; // Log with different levels debug('Debugging information', { userId: 123 }); info('System started'); warn('Potential issue detected'); error('Critical error occurred');
# Start the MCP Agent npx mcp-agent start # List available tools npx mcp-agent list-tools # Set log level npx mcp-agent log-level debug
import { BaseExecutor, Task } from '@waldzell/mcp-agent-ts'; const executor = new BaseExecutor({ maxConcurrentTasks: 3, timeout: 60000 // 1-minute timeout }); const task: Task = { id: 'example-task', name: 'Sample Task', execute: async () => { // Task implementation return 'Task completed'; } }; await executor.enqueueTask(task);
The MCP Agent can be configured through:
š§ Early Stage Development š§
This is an early-stage port and is not yet feature-complete. Contributions and feedback are welcome!
Original MCP Agent: lastmile-ai/mcp-agent
git checkout -b feature/AmazingFeature
)git commit -m 'Add some AmazingFeature'
)git push origin feature/AmazingFeature
)This project follows the license of the original MCP Agent project, found here.
Special thanks to the original MCP Agent developers for creating an innovative framework for AI agent development.
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!