Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • SQLite MCP Server
  • TxtAi Memory Vector Server
  • MCP SSH Server
  • ERPNext MCP Server
  • Powertools MCP Search Server
Back to MCP Servers
DevDocs MCP

DevDocs MCP

Public
llmian-space/devdocs-mcp

A Model Context Protocol implementation that enables AI-powered access to documentation resources, featuring URI-based navigation, template matching, and structured documentation management.

Verified
python
0 tools
May 30, 2025
Updated May 30, 2025

DevDocs MCP Implementation

A Model Context Protocol (MCP) implementation for documentation management and integration.

Project Structure

src/
├── resources/
│   ├── templates/      # Resource template system
│   └── managers/       # Resource management
├── documentation/
│   ├── processors/     # Documentation processing
│   └── integrators/    # Integration handlers
├── tasks/
│   ├── issues/         # Issue tracking
│   └── reviews/        # Review management
└── tests/
    ├── property/       # Property-based tests
    └── integration/    # Integration tests

Core Components

Resource Template System

The resource template system provides URI-based access to documentation resources with:

  • Type-safe parameter handling through Pydantic
  • Flexible URI template matching
  • Comprehensive error handling
  • State management for resource lifecycle

Example usage:

from src.resources.templates.base import ResourceTemplate # Create a template with parameter typing template = ResourceTemplate( uri_template='docs://api/{version}/endpoint', parameter_types={'version': str} ) # Extract and validate parameters params = template.extract_parameters('docs://api/v1/endpoint') template.validate_parameters(params)

Testing Strategy

The project uses property-based testing with Hypothesis to ensure:

  • URI template validation
  • Parameter extraction correctness
  • Error handling robustness
  • Type safety enforcement

Run tests:

pytest tests/property/test_templates.py

Implementation Progress

Completed

  • Basic project structure
  • Resource template system
  • Property-based testing infrastructure
  • URI validation and parameter extraction
  • Error handling foundation

In Progress

  • Documentation processor integration
  • Caching layer implementation
  • Task management system
  • Performance optimization

Planned

  • Search implementation
  • Branch mapping system
  • State tracking
  • Monitoring system

Development Guidelines

  1. Follow TDD approach:

    • Write property-based tests first
    • Implement minimal passing code
    • Refactor for clarity and efficiency
  2. Error Handling:

    • Use structured error types
    • Implement recovery strategies
    • Maintain system stability
  3. Documentation:

    • Keep README updated
    • Document new features
    • Include usage examples

Branch Management

The project uses a branch-based development approach for:

  • Feature tracking
  • Documentation integration
  • Task management
  • Progress monitoring

Contributing

  1. Create feature branch
  2. Add property tests
  3. Implement feature
  4. Update documentation
  5. Submit pull request

Next Steps

  1. Implement documentation processor integration
  2. Add caching layer with proper lifecycle management
  3. Develop task management system
  4. Create monitoring and performance metrics

Support Resources

  • MCP Concepts: mcp-docs/docs/concepts/
  • Python SDK: python-sdk/src/mcp/
  • Example Servers: python-sdk/examples/servers/
Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • SQLite MCP Server
    SQLite MCP Server

    A Model Context Protocol server implementation that enables AI assistants to execute SQL queries and...

    Added May 30, 2025
  • TxtAi Memory Vector Server
    TxtAi Memory Vector Server

    Model Context Protocol (MCP) server implementation for semantic search and memory management using T...

    Added May 30, 2025
  • MCP SSH Server
    MCP SSH Server

    A secure SSH server implementation for Model Context Protocol that enables remote command execution ...

    Added May 30, 2025
  • ERPNext MCP Server
    ERPNext MCP Server

    A TypeScript-based server that enables AI assistants to interact with ERPNext/Frappe systems through...

    Added May 30, 2025
  • Powertools MCP Search Server
    Powertools MCP Search Server

    Enables LLMs to search through AWS Lambda Powertools documentation across multiple runtimes (Python,...

    2 tools
    Added May 30, 2025