Related MCP Server Resources

Explore more AI models, providers, and integration options:

  • Explore AI Models
  • Explore AI Providers
  • Explore MCP Servers
  • LangDB Pricing
  • Documentation
  • AI Industry Blog
  • Python Codebase Analysis RAG System
  • Image Generation MCP Server
  • MCP Server for Deep Research
  • GitHub MCP Server
  • Surf MCP Server
Back to MCP Servers
DependencyMCP Server

DependencyMCP Server

Public
mkearl/dependency-mcp

Analyzes multi-language codebases to generate detailed dependency graphs, extract file metadata, infer architectural layers, and evaluate code quality against architectural rules using the Model Context Protocol.

javascript
0 tools
May 30, 2025
Updated Jun 4, 2025

Supercharge Your AI with DependencyMCP Server

MCP Server

Unlock the full potential of DependencyMCP Server through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.

Unified API Access
Complete Tracing
Instant Setup
Get Started Now

Free tier available • No credit card required

Instant Setup
99.9% Uptime
10,000+Monthly Requests

DependencyMCP Server

A Model Context Protocol (MCP) server that analyzes codebases to generate dependency graphs and architectural insights. This server helps understand code structure, dependencies, and architectural patterns across multiple programming languages.

Features

  • Multi-Language Support: Analyzes dependencies in TypeScript, JavaScript, C#, Python, and more
  • Dependency Graph Generation: Creates detailed dependency graphs in JSON or DOT format
  • Architectural Analysis: Infers architectural layers and validates against rules
  • File Metadata: Extracts imports, exports, and other metadata from source files
  • Scoring System: Evaluates codebase against architectural rules and patterns

Installation

  1. Clone the repository
  2. Install dependencies:
npm install
  1. Build the project:
npm run build

Configuration

Add to your MCP settings file (usually located at ~/.config/cline/mcp_settings.json or equivalent):

json { mcpServers: { \DependencyMCP: { \command: 
ode, \args: [\path/to/dependency-mcp/dist/index.js], \env: { \MAX_LINES_TO_READ: \1000, \CACHE_DIR: \path/to/dependency-mcp/.dependency-cache, \CACHE_TTL: \3600000 } } }

Environment Variables:

  • MAX_LINES_TO_READ: Maximum number of lines to read from each file (default: 1000)
  • CACHE_DIR: Directory to store dependency cache files (default: .dependency-cache)
  • CACHE_TTL: Cache time-to-live in milliseconds (default: 1 hour = 3600000)

Available Tools

analyze_dependencies

Analyzes dependencies in a codebase and generates a dependency graph.

const result = await client.callTool("DependencyMCP", "analyze_dependencies", { path: "/path/to/project", excludePatterns: ["node_modules", "dist"], // optional maxDepth: 10, // optional fileTypes: [".ts", ".js", ".cs"] // optional });

get_dependency_graph

Gets the dependency graph for a codebase in JSON or DOT format.

const result = await client.callTool("DependencyMCP", "get_dependency_graph", { path: "/path/to/project", format: "dot" // or "json" (default) });

get_file_metadata

Gets detailed metadata about a specific file.

const result = await client.callTool("DependencyMCP", "get_file_metadata", { path: "/path/to/file.ts" });

get_architectural_score

Scores the codebase against architectural rules and patterns.

const result = await client.callTool("DependencyMCP", "get_architectural_score", { path: "/path/to/project", rules: [ { pattern: "src/domain/**/*", allowed: ["src/domain/**/*"], forbidden: ["src/infrastructure/**/*"] } ] });

Example Output

Dependency Graph (JSON)

{ "src/index.ts": { "path": "src/index.ts", "imports": ["./utils", "./services/parser"], "exports": ["analyze", "generateGraph"], "namespaces": [], "architecturalLayer": "Infrastructure", "dependencies": ["src/utils.ts", "src/services/parser.ts"], "dependents": [] } }

Architectural Score

{ "score": 85, "violations": [ "src/domain/user.ts -> src/infrastructure/database.ts violates architectural rules" ], "details": "Score starts at 100 and deducts 5 points per violation" }

Development

The server is built with TypeScript and uses:

  • Zod for schema validation
  • diff for file comparison
  • minimatch for glob pattern matching

Project Structure

dependency-mcp/
├── src/
│   └── index.mts    # Main server implementation
├── package.json
├── tsconfig.json
└── README.md

Adding Support for New Languages

To add support for a new programming language:

  1. Add file extensions to the default fileTypes array
  2. Implement language-specific regex patterns in parseFileImports and parseFileExports
  3. Add any language-specific architectural patterns to inferArchitecturalLayer

License

MIT

Publicly Shared Threads0

Discover shared experiences

Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!

Share your threads to help others
Related MCPs5
  • Python Codebase Analysis RAG System
    Python Codebase Analysis RAG System

    Analyzes Python codebases using AST to extract and vectorize code elements, enabling advanced queryi...

    Added May 30, 2025
  • Image Generation MCP Server
    Image Generation MCP Server

    Enables high-quality image generation via Model Context Protocol with customizable dimensions, promp...

    1 tools
    Added May 30, 2025
  • MCP Server for Deep Research
    MCP Server for Deep Research

    Conduct comprehensive, structured research with a Model Context Protocol server that elaborates ques...

    Added May 30, 2025
  • GitHub MCP Server
    GitHub MCP Server

    Enhance Claude Desktop with seamless GitHub integration via Model Context Protocol, enabling natural...

    Added May 30, 2025
  • Surf MCP Server
    Surf MCP Server

    Provides tide information by location and date using latitude, longitude, and time zone data via Mod...

    1 tools
    Added May 30, 2025