Manage, execute, and track Blender Python scripts in a headless environment using Model Context Protocol with features for script editing, execution, result retrieval, and metadata management.
Unlock the full potential of Blender MCP Server through LangDB's AI Gateway. Get enterprise-grade security, analytics, and seamless integration with zero configuration.
Free tier available • No credit card required
A Model Context Protocol (MCP) server for managing and executing Blender scripts.
pip install mcp
)Start the server:
python server.py
Connect to the server using an MCP client (like Claude Desktop)
Use the provided tools to manage scripts:
add_script(name, content)
- Add a new scriptedit_script(name, content)
- Edit an existing scriptexecute_script(name, blend_file=None)
- Execute a script in Blender, optionally specifying a .blend fileremove_script(name)
- Remove a scriptAccess resources to get information:
scripts://list
- Get list of available scriptsscript://{name}
- Get content of a specific scriptresult://{name}
- Get execution result of a script# Add a simple script add_script("hello_cube", ''' import bpy # Clear existing objects bpy.ops.object.select_all(action='SELECT') bpy.ops.object.delete() # Create a cube bpy.ops.mesh.primitive_cube_add(size=2, location=(0, 0, 0)) print("Cube created!") ''') # Execute the script execute_script("hello_cube") # Get the result # Access using: result://hello_cube
# Add a script that works with a blend file add_script("analyze_scene", ''' import bpy # Print information about the current scene print(f"Current Blender version: {bpy.app.version_string}") print(f"Current file: {bpy.data.filepath}") # List all objects in the scene print("\ Objects in the scene:") for obj in bpy.data.objects: print(f" - {obj.name} ({obj.type})") ''') # Execute with a specific blend file execute_script("analyze_scene", blend_file="/path/to/your/project.blend") # Get the result # Access using: result://analyze_scene
script_files/scripts
directoryscript_files/results
directoryscript_files/metadata.json
pip install mcp
MIT
Discover shared experiences
Shared threads will appear here, showcasing real-world applications and insights from the community. Check back soon for updates!